extreme f(x)=4x+4sin(x),0<= x<= 2pi
|
extreme\:f(x)=4x+4\sin(x),0\le\:x\le\:2π
|
extreme f(x,y)=x^2+7xy+y^2
|
extreme\:f(x,y)=x^{2}+7xy+y^{2}
|
extreme f(x)=2x^2-16ln(x)
|
extreme\:f(x)=2x^{2}-16\ln(x)
|
extreme f(x,y)=xsqrt(1+y^3)
|
extreme\:f(x,y)=x\sqrt{1+y^{3}}
|
extreme f(x)=(1+x)/(1+x^2)
|
extreme\:f(x)=\frac{1+x}{1+x^{2}}
|
extreme f(x)=x^2y+2xy-y^2-3y
|
extreme\:f(x)=x^{2}y+2xy-y^{2}-3y
|
extreme f(x)=x^3-3x+2,(-2,2)
|
extreme\:f(x)=x^{3}-3x+2,(-2,2)
|
extreme f(x)=288y^2+x^2-x^2y
|
extreme\:f(x)=288y^{2}+x^{2}-x^{2}y
|
extreme f(x,y)=5x^2-xy+3y^2
|
extreme\:f(x,y)=5x^{2}-xy+3y^{2}
|
extreme p(b,c)=2b+2c
|
extreme\:p(b,c)=2b+2c
|
extreme f(x)=|x-5|+1
|
extreme\:f(x)=\left|x-5\right|+1
|
extreme g(x)=xsqrt(8-x^2)
|
extreme\:g(x)=x\sqrt{8-x^{2}}
|
extreme f(x,y)=sqrt(400-25x^2-64y^2)
|
extreme\:f(x,y)=\sqrt{400-25x^{2}-64y^{2}}
|
extreme f(x)=x^3+3x^2-9x-1
|
extreme\:f(x)=x^{3}+3x^{2}-9x-1
|
extreme f(x,y)=(1/2-x^2+y^2)e^{1-x^2-y^2}
|
extreme\:f(x,y)=(\frac{1}{2}-x^{2}+y^{2})e^{1-x^{2}-y^{2}}
|
extreme f(x)=x^2-8x+9
|
extreme\:f(x)=x^{2}-8x+9
|
extreme f(x,y)=x^3-y^3+6xy
|
extreme\:f(x,y)=x^{3}-y^{3}+6xy
|
extreme f(x,y)=288y^2+x^2-x^2y
|
extreme\:f(x,y)=288y^{2}+x^{2}-x^{2}y
|
extreme f(x,y)=x(x-4)y(y-4)
|
extreme\:f(x,y)=x(x-4)y(y-4)
|
extreme f(x,y)=x^2-2x+y^2
|
extreme\:f(x,y)=x^{2}-2x+y^{2}
|
extreme f(x)=2x^3-3x^2-12x-3
|
extreme\:f(x)=2x^{3}-3x^{2}-12x-3
|
extreme f(x)=5(5x)^x,0.05<= x<= 1
|
extreme\:f(x)=5(5x)^{x},0.05\le\:x\le\:1
|
extreme f(x)=3x^3e^{-x},-1<= x<= 6
|
extreme\:f(x)=3x^{3}e^{-x},-1\le\:x\le\:6
|
extreme y=x^4-4x^2=x^2(x^2-4)
|
extreme\:y=x^{4}-4x^{2}=x^{2}(x^{2}-4)
|
extreme f(x)=2x^3+3x^2-12x+7
|
extreme\:f(x)=2x^{3}+3x^{2}-12x+7
|
extreme-x+2cos(x)
|
extreme\:-x+2\cos(x)
|
extreme f(x,y)=x^2y+2xy-y^2-3y
|
extreme\:f(x,y)=x^{2}y+2xy-y^{2}-3y
|
extreme f(x)=cos(x)-3x
|
extreme\:f(x)=\cos(x)-3x
|
extreme f(x)=3x^2-24ln(x)
|
extreme\:f(x)=3x^{2}-24\ln(x)
|
extreme f(x)=5sin(3x)-5,(0,2pi)
|
extreme\:f(x)=5\sin(3x)-5,(0,2π)
|
extreme f(x)=7+4x^2-x^4
|
extreme\:f(x)=7+4x^{2}-x^{4}
|
extreme f(x)= x/(x^2-x+16),0<= x<= 12
|
extreme\:f(x)=\frac{x}{x^{2}-x+16},0\le\:x\le\:12
|
extreme f(x)=(x+3)/(x^2-5x-24)
|
extreme\:f(x)=\frac{x+3}{x^{2}-5x-24}
|
extreme f(x,y)=sqrt(400-4x^2-25y^2)
|
extreme\:f(x,y)=\sqrt{400-4x^{2}-25y^{2}}
|
extreme f(x)=x(2x^3+3x-12)
|
extreme\:f(x)=x(2x^{3}+3x-12)
|
extreme f(x)=10+3x-x^2
|
extreme\:f(x)=10+3x-x^{2}
|
extreme f(x,y)=x^3+3xy-y^3
|
extreme\:f(x,y)=x^{3}+3xy-y^{3}
|
extreme f(x)=(x^2-11x+82)/(x-9)
|
extreme\:f(x)=\frac{x^{2}-11x+82}{x-9}
|
extreme x^3-12x^2+45x+1
|
extreme\:x^{3}-12x^{2}+45x+1
|
extreme 10
|
extreme\:10
|
extreme f(x)=3x^4-8x^3-6x^2+24x-3
|
extreme\:f(x)=3x^{4}-8x^{3}-6x^{2}+24x-3
|
extreme f(x)=3x^5-x^3+4x-2
|
extreme\:f(x)=3x^{5}-x^{3}+4x-2
|
extreme F(x,y)=x^2+y^2+x+y+xy
|
extreme\:F(x,y)=x^{2}+y^{2}+x+y+xy
|
extreme f(x)=(x^3)/(x^2+3)
|
extreme\:f(x)=\frac{x^{3}}{x^{2}+3}
|
extreme f(x)=2x^3+x^2+2x
|
extreme\:f(x)=2x^{3}+x^{2}+2x
|
extreme f(x)=4xy-x^3-2y^2
|
extreme\:f(x)=4xy-x^{3}-2y^{2}
|
extreme f(x)=x^2-8ln(x),1<= x<= 5
|
extreme\:f(x)=x^{2}-8\ln(x),1\le\:x\le\:5
|
extreme (x+5)/(x^2-2x-35)
|
extreme\:\frac{x+5}{x^{2}-2x-35}
|
extreme f(x)=x^2sqrt(5-x)
|
extreme\:f(x)=x^{2}\sqrt{5-x}
|
extreme f(x,y,z)=x^2+y^2
|
extreme\:f(x,y,z)=x^{2}+y^{2}
|
extreme f(x)=x^{11}-3x^{10}+2
|
extreme\:f(x)=x^{11}-3x^{10}+2
|
extreme f(x,y)=y^2ln(xy)
|
extreme\:f(x,y)=y^{2}\ln(xy)
|
extreme f(x)=5sin^2(x),0<= x<= pi
|
extreme\:f(x)=5\sin^{2}(x),0\le\:x\le\:π
|
extreme f(x,y)=x^3+y^3-3x^2-9y^2-9x
|
extreme\:f(x,y)=x^{3}+y^{3}-3x^{2}-9y^{2}-9x
|
extreme f(x,y)= 1/3 sqrt(36-9x^2-4y^2)
|
extreme\:f(x,y)=\frac{1}{3}\sqrt{36-9x^{2}-4y^{2}}
|
roots y+v
|
roots\:y+v
|
extreme y=(4x)/(x^2+1)
|
extreme\:y=\frac{4x}{x^{2}+1}
|
extreme f(x)=-5x^6ln(x),(0,4)
|
extreme\:f(x)=-5x^{6}\ln(x),(0,4)
|
extreme f(x)=8sin(x)+8cos(x)
|
extreme\:f(x)=8\sin(x)+8\cos(x)
|
extreme f(x)=5x+5sin(x),0<= x<= 2pi
|
extreme\:f(x)=5x+5\sin(x),0\le\:x\le\:2π
|
extreme f(x)= 1/2 x+2,-3<= x<= 3
|
extreme\:f(x)=\frac{1}{2}x+2,-3\le\:x\le\:3
|
extreme f(x)=(x^2)/(x^2+27)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}+27}
|
extreme f(x)=2x^2+4x+10
|
extreme\:f(x)=2x^{2}+4x+10
|
extreme f(x)=1-x^3-3x-2x^2+3x^4
|
extreme\:f(x)=1-x^{3}-3x-2x^{2}+3x^{4}
|
extreme f(x)=(x-1)(x+2)(x+4)
|
extreme\:f(x)=(x-1)(x+2)(x+4)
|
extreme f(x)=4x^5-3x^3-3x+1
|
extreme\:f(x)=4x^{5}-3x^{3}-3x+1
|
extreme f(x,y)=2xy-5x^2-2y^2+4x+4y-4
|
extreme\:f(x,y)=2xy-5x^{2}-2y^{2}+4x+4y-4
|
extreme w(x,y)=6+(3xy)/(75)
|
extreme\:w(x,y)=6+\frac{3xy}{75}
|
extreme f(x)=14xy-x^3-7y^2
|
extreme\:f(x)=14xy-x^{3}-7y^{2}
|
extreme x^{4/3}(7x^2+10x-210)
|
extreme\:x^{\frac{4}{3}}(7x^{2}+10x-210)
|
extreme f(x)=-x^3+3x^2-8
|
extreme\:f(x)=-x^{3}+3x^{2}-8
|
extreme f(x)=8x^2-2x^4
|
extreme\:f(x)=8x^{2}-2x^{4}
|
extreme P(q,s)=q+2+s
|
extreme\:P(q,s)=q+2+s
|
extreme f(x)= 5/3 x^3-65/2 x^2+200x-1
|
extreme\:f(x)=\frac{5}{3}x^{3}-\frac{65}{2}x^{2}+200x-1
|
extreme f(x)=4x^2e^{-0.25x}
|
extreme\:f(x)=4x^{2}e^{-0.25x}
|
extreme f(x)=x^3-9x^2+15x+2
|
extreme\:f(x)=x^{3}-9x^{2}+15x+2
|
extreme f(x)=(x^2-1)e^{-x}
|
extreme\:f(x)=(x^{2}-1)e^{-x}
|
extreme f(x)=-2/3 x^3+9x^2-28x+1
|
extreme\:f(x)=-\frac{2}{3}x^{3}+9x^{2}-28x+1
|
extreme f(x)=ln(x^2+4)
|
extreme\:f(x)=\ln(x^{2}+4)
|
extreme f(x)=x(25-40+2x)(40/2-x)
|
extreme\:f(x)=x(25-40+2x)(\frac{40}{2}-x)
|
extreme f(x)=x^{1/5}(x+12)
|
extreme\:f(x)=x^{\frac{1}{5}}(x+12)
|
extreme F(x,y)=x^2y^2+x^2y+xy^2+xy
|
extreme\:F(x,y)=x^{2}y^{2}+x^{2}y+xy^{2}+xy
|
extreme f(x)=((x-6)^{(4/7)})-3
|
extreme\:f(x)=((x-6)^{(\frac{4}{7})})-3
|
extreme x^3-8y^3+4xy-8
|
extreme\:x^{3}-8y^{3}+4xy-8
|
extreme f(x,y)=2x^2-4x+y^2-6y+1
|
extreme\:f(x,y)=2x^{2}-4x+y^{2}-6y+1
|
extreme f(x)=(24+x)(600-15x)
|
extreme\:f(x)=(24+x)(600-15x)
|
extreme f(x,y)=-(x+1)^2-(y+x)^2
|
extreme\:f(x,y)=-(x+1)^{2}-(y+x)^{2}
|
extreme f(x)=cos(x)-6x,0<= x<= 4pi
|
extreme\:f(x)=\cos(x)-6x,0\le\:x\le\:4π
|
extreme 4x^3-12x
|
extreme\:4x^{3}-12x
|
extreme f(x,y)=2x^2-3xy+3y^2
|
extreme\:f(x,y)=2x^{2}-3xy+3y^{2}
|
extreme f(x,y)=2x^2y^2-3xy
|
extreme\:f(x,y)=2x^{2}y^{2}-3xy
|
extreme f(x)=x-(-4)x^{-1}
|
extreme\:f(x)=x-(-4)x^{-1}
|
extreme f(x)=x+5/x
|
extreme\:f(x)=x+\frac{5}{x}
|
extreme y=xsqrt(36-x^2)
|
extreme\:y=x\sqrt{36-x^{2}}
|
extreme x^2-8ln(x)
|
extreme\:x^{2}-8\ln(x)
|
extreme f(x,y)=xy^2-6x^2-3x+2xy+9
|
extreme\:f(x,y)=xy^{2}-6x^{2}-3x+2xy+9
|
extreme f(p,q)=pq-1/p-1/q
|
extreme\:f(p,q)=pq-\frac{1}{p}-\frac{1}{q}
|
extreme 3x^4-4x^3-36x^2+5
|
extreme\:3x^{4}-4x^{3}-36x^{2}+5
|
extreme f(x)=xsqrt(18-x)
|
extreme\:f(x)=x\sqrt{18-x}
|
extreme f(x,y)=x^2y+2xy-y^2-3y
|
extreme\:f(x,y)=x^{2}y+2xy-y^{2}-3y
|