Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme 3x^2-12x
extreme\:3x^{2}-12x
perpendicular y=2x+4
perpendicular\:y=2x+4
range of y=sqrt(5-x)
range\:y=\sqrt{5-x}
asymptotes of f(x)=(4x^2)/(x^2-9)
asymptotes\:f(x)=\frac{4x^{2}}{x^{2}-9}
intercepts of 1/2 x^3-2x^2-1
intercepts\:\frac{1}{2}x^{3}-2x^{2}-1
inverse of f(x)=(3-x)/(2x-1)
inverse\:f(x)=\frac{3-x}{2x-1}
inverse of a^x
inverse\:a^{x}
perpendicular y= 1/3 x-3
perpendicular\:y=\frac{1}{3}x-3
domain of (2x+3)/(x-4)
domain\:\frac{2x+3}{x-4}
perpendicular 2x-5y=-25
perpendicular\:2x-5y=-25
domain of y=e^{-2x}
domain\:y=e^{-2x}
asymptotes of f(x)=(2x^2+x-1)/(x+4)
asymptotes\:f(x)=\frac{2x^{2}+x-1}{x+4}
range of f(x)=5x^2+7
range\:f(x)=5x^{2}+7
f(x)=x^2-2x
f(x)=x^{2}-2x
monotone f(x)= 1/(x^2-6x+12)
monotone\:f(x)=\frac{1}{x^{2}-6x+12}
domain of f(x)=x^2+5x
domain\:f(x)=x^{2}+5x
inflection (x-2)^{(4)}
inflection\:(x-2)^{(4)}
domain of f(x)=4x^3+5x^2
domain\:f(x)=4x^{3}+5x^{2}
inflection f(x)=e^x-x^2-2x+6
inflection\:f(x)=e^{x}-x^{2}-2x+6
asymptotes of f(x)=-3*5^{-x+3}
asymptotes\:f(x)=-3\cdot\:5^{-x+3}
intercepts of f(x)=x^3+x
intercepts\:f(x)=x^{3}+x
range of-x^2-2x-1
range\:-x^{2}-2x-1
domain of f(x)=0.5(2)^x
domain\:f(x)=0.5(2)^{x}
domain of sqrt(x^2-3)
domain\:\sqrt{x^{2}-3}
domain of 9-4x^2
domain\:9-4x^{2}
distance (-3,2),(2,-2)
distance\:(-3,2),(2,-2)
intercepts of f(x)=-1/2 (x-1/3)^2-3/2
intercepts\:f(x)=-\frac{1}{2}(x-\frac{1}{3})^{2}-\frac{3}{2}
domain of (x-2)^3
domain\:(x-2)^{3}
shift f(x)=5sin(2x)
shift\:f(x)=5\sin(2x)
domain of x-4
domain\:x-4
domain of g(x)=-2
domain\:g(x)=-2
range of f(x)=xsqrt(x-15)
range\:f(x)=x\sqrt{x-15}
inverse of 4/(x+2)
inverse\:\frac{4}{x+2}
range of cos^2(x)
range\:\cos^{2}(x)
intercepts of f(x)=2x^2+20x-4
intercepts\:f(x)=2x^{2}+20x-4
inverse of f(x)=2ln(3x+2)-4
inverse\:f(x)=2\ln(3x+2)-4
amplitude of tan(x+pi/2)
amplitude\:\tan(x+\frac{π}{2})
distance (0,0),(17,17)
distance\:(0,0),(17,17)
parity arctan(sec(A))
parity\:\arctan(\sec(A))
critical ln(4x^2+2x-11)
critical\:\ln(4x^{2}+2x-11)
inverse of f(x)=log_{6}(x+2)-log_{6}(2)
inverse\:f(x)=\log_{6}(x+2)-\log_{6}(2)
asymptotes of f(x)=(x^2+7x-18)/(x^2-4)
asymptotes\:f(x)=\frac{x^{2}+7x-18}{x^{2}-4}
extreme f(x)=4x^2-6
extreme\:f(x)=4x^{2}-6
asymptotes of f(x)=(x+8)/(x+9)
asymptotes\:f(x)=\frac{x+8}{x+9}
inverse of f(x)=x^3-7
inverse\:f(x)=x^{3}-7
domain of sqrt(5x+1)
domain\:\sqrt{5x+1}
inverse of y=(-2)/(x+1)
inverse\:y=\frac{-2}{x+1}
domain of (7/x)/(7/x+7)
domain\:\frac{\frac{7}{x}}{\frac{7}{x}+7}
range of x^2+x+2
range\:x^{2}+x+2
range of f(x)=sqrt(6x)
range\:f(x)=\sqrt{6x}
intercepts of y=-2
intercepts\:y=-2
domain of f(x)=((1-5x))/2
domain\:f(x)=\frac{(1-5x)}{2}
inverse of f(x)=(x-5)/x
inverse\:f(x)=\frac{x-5}{x}
asymptotes of f(x)=((3x^3-3))/(x-x^2)
asymptotes\:f(x)=\frac{(3x^{3}-3)}{x-x^{2}}
inverse of f(x)=(x-4)/(3x+5)
inverse\:f(x)=\frac{x-4}{3x+5}
domain of f(x)=(t+1)/(t^2-t-2)
domain\:f(x)=\frac{t+1}{t^{2}-t-2}
domain of f(x)= 4/(sqrt(4-2x))
domain\:f(x)=\frac{4}{\sqrt{4-2x}}
critical x/(x^2+2)
critical\:\frac{x}{x^{2}+2}
intercepts of f(x)=x^3+8x^2+15x
intercepts\:f(x)=x^{3}+8x^{2}+15x
asymptotes of-2/x
asymptotes\:-\frac{2}{x}
extreme f(x)=4x^3-3x^2-18x+17
extreme\:f(x)=4x^{3}-3x^{2}-18x+17
domain of (sqrt(4-x))^2+6
domain\:(\sqrt{4-x})^{2}+6
inverse of f(x)=x^2+6x-6
inverse\:f(x)=x^{2}+6x-6
range of sqrt(x+2)-2
range\:\sqrt{x+2}-2
midpoint (0,2),(8,8)
midpoint\:(0,2),(8,8)
intercepts of f(x)=-6x^2-4x-5
intercepts\:f(x)=-6x^{2}-4x-5
intercepts of (-4x-6)/(3x-2)
intercepts\:\frac{-4x-6}{3x-2}
domain of f(x)=ln(3-7x)
domain\:f(x)=\ln(3-7x)
extreme f(x)=-6x^2+18000x
extreme\:f(x)=-6x^{2}+18000x
extreme f(x)=120x-0.4x^4+800
extreme\:f(x)=120x-0.4x^{4}+800
line (-2,3),(4,5)
line\:(-2,3),(4,5)
domain of f(x)=sqrt(5x-30)
domain\:f(x)=\sqrt{5x-30}
critical f(x)=t^4-16t^3+64t^2
critical\:f(x)=t^{4}-16t^{3}+64t^{2}
distance (2,-7),(9,-2)
distance\:(2,-7),(9,-2)
inverse of f(x)=log_{5}(x^3)
inverse\:f(x)=\log_{5}(x^{3})
lcm-5,-2
lcm\:-5,-2
asymptotes of f(x)=(3x+5)/(x-2)
asymptotes\:f(x)=\frac{3x+5}{x-2}
domain of f(x)= 1/2 x+1
domain\:f(x)=\frac{1}{2}x+1
line (4,10),(12,18)
line\:(4,10),(12,18)
intercepts of f(x)=(x^2+2x-3)/(x^2-1)
intercepts\:f(x)=\frac{x^{2}+2x-3}{x^{2}-1}
midpoint (-6.3,5.2),(1.8,-1)
midpoint\:(-6.3,5.2),(1.8,-1)
asymptotes of f(x)=((x^2-x))/(x^2-6x+5)
asymptotes\:f(x)=\frac{(x^{2}-x)}{x^{2}-6x+5}
domain of f(x)=-sqrt(x-1)e^{1/x}
domain\:f(x)=-\sqrt{x-1}e^{\frac{1}{x}}
critical f(x)=xsqrt(16-x^2)
critical\:f(x)=x\sqrt{16-x^{2}}
intercepts of f(x)=x^2-5x+6
intercepts\:f(x)=x^{2}-5x+6
slope ofintercept 2x-y=-5
slopeintercept\:2x-y=-5
asymptotes of f(x)=(x-1)/(x+2)
asymptotes\:f(x)=\frac{x-1}{x+2}
domain of g(x)=sqrt(x(x-2))
domain\:g(x)=\sqrt{x(x-2)}
extreme f(x)=xsqrt(196-x^2)
extreme\:f(x)=x\sqrt{196-x^{2}}
intercepts of (3x^2-3)/(x^2-5x+4)
intercepts\:\frac{3x^{2}-3}{x^{2}-5x+4}
slope of 5x-2y=4
slope\:5x-2y=4
critical f(x)=2.6+2.2x-0.6x^2
critical\:f(x)=2.6+2.2x-0.6x^{2}
domain of f(x)=ln((x^2-3)/(1-x^2))
domain\:f(x)=\ln(\frac{x^{2}-3}{1-x^{2}})
slope ofintercept 2x+2y=4
slopeintercept\:2x+2y=4
inverse of f(x)=8sqrt(x),x>= 0
inverse\:f(x)=8\sqrt{x},x\ge\:0
domain of f(x)=(1/5)
domain\:f(x)=(\frac{1}{5})
slope of 4x-1=3y+5
slope\:4x-1=3y+5
domain of f(x)= 5/((\frac{x){x+5})}
domain\:f(x)=\frac{5}{(\frac{x}{x+5})}
domain of 1/x+2
domain\:\frac{1}{x}+2
critical f(x)=x^4-162x^2+6561
critical\:f(x)=x^{4}-162x^{2}+6561
1
..
137
138
139
140
141
..
1324