Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=\sqrt[3]{1-x^2}
domain\:f(x)=\sqrt[3]{1-x^{2}}
inverse of f(x)=((4-x))/2
inverse\:f(x)=\frac{(4-x)}{2}
distance (-1,8),(-5,4)
distance\:(-1,8),(-5,4)
asymptotes of f(x)=(x^2+1)/(3(x-8))
asymptotes\:f(x)=\frac{x^{2}+1}{3(x-8)}
inflection 4x+8cos(x)
inflection\:4x+8\cos(x)
domain of-1/(2sqrt(9-x))
domain\:-\frac{1}{2\sqrt{9-x}}
domain of sqrt((x^3+8)/(x^2+9x+14))
domain\:\sqrt{\frac{x^{3}+8}{x^{2}+9x+14}}
domain of f(x)=10-x
domain\:f(x)=10-x
domain of f(x)=8x^2+7x-1
domain\:f(x)=8x^{2}+7x-1
parallel 10x+6y=8
parallel\:10x+6y=8
slope of 9/8 x+5
slope\:\frac{9}{8}x+5
domain of ln(9-t^2)
domain\:\ln(9-t^{2})
y=2x-3
y=2x-3
inverse of y=-log_{4}(x+4)+2
inverse\:y=-\log_{4}(x+4)+2
inflection f(x)=6x^3+36x^2+54x
inflection\:f(x)=6x^{3}+36x^{2}+54x
domain of f(x)=(5x)/(x+2)
domain\:f(x)=\frac{5x}{x+2}
inverse of f(x)=5^x
inverse\:f(x)=5^{x}
domain of (\sqrt[3]{x-5})/(x^3-5)
domain\:\frac{\sqrt[3]{x-5}}{x^{3}-5}
domain of f(x)=pi
domain\:f(x)=π
f(x)=x^2-2x+5
f(x)=x^{2}-2x+5
inverse of y=sqrt(3-(x+12.2)^2)-3
inverse\:y=\sqrt{3-(x+12.2)^{2}}-3
midpoint (6,4),(4, 4/3)
midpoint\:(6,4),(4,\frac{4}{3})
intercepts of y=(1/2)^x
intercepts\:y=(\frac{1}{2})^{x}
domain of x^2-7
domain\:x^{2}-7
inverse of f(x)=2^{3-x}-2
inverse\:f(x)=2^{3-x}-2
range of 1/2 sqrt(2x-8)-7
range\:\frac{1}{2}\sqrt{2x-8}-7
domain of f(x)=sqrt(4-x)+1
domain\:f(x)=\sqrt{4-x}+1
inflection x^{23/11}-x^{12/11}
inflection\:x^{\frac{23}{11}}-x^{\frac{12}{11}}
inverse of 1/(sqrt(x^2+7))
inverse\:\frac{1}{\sqrt{x^{2}+7}}
intercepts of (x+1)/(x-1)
intercepts\:\frac{x+1}{x-1}
inverse of f(x)= x/(144)
inverse\:f(x)=\frac{x}{144}
shift y=5tan(5x-pi)
shift\:y=5\tan(5x-π)
distance (-4,5),(-1,8)
distance\:(-4,5),(-1,8)
domain of f(x)= 3/(3-x)
domain\:f(x)=\frac{3}{3-x}
slope ofintercept 3x-y=-2
slopeintercept\:3x-y=-2
asymptotes of (x-4)/(-4x-16)
asymptotes\:\frac{x-4}{-4x-16}
extreme x/(x^2+6x+5)
extreme\:\frac{x}{x^{2}+6x+5}
domain of f(x)=sqrt(2-2x)
domain\:f(x)=\sqrt{2-2x}
range of f(x)=-3^x
range\:f(x)=-3^{x}
parity f(x)=c^x
parity\:f(x)=c^{x}
inverse of 7+\sqrt[3]{x}
inverse\:7+\sqrt[3]{x}
inverse of 10^x
inverse\:10^{x}
domain of f(x)=(2x)/(12-sqrt(x^2-25))
domain\:f(x)=\frac{2x}{12-\sqrt{x^{2}-25}}
asymptotes of f(x)= 1/(x+3)-7
asymptotes\:f(x)=\frac{1}{x+3}-7
inverse of f(x)= 1/x+3
inverse\:f(x)=\frac{1}{x}+3
domain of (sqrt(x))/(7x^2+6x-1)
domain\:\frac{\sqrt{x}}{7x^{2}+6x-1}
critical 3x^2-12x-15
critical\:3x^{2}-12x-15
perpendicular y=3x-5
perpendicular\:y=3x-5
slope ofintercept y+2=-2(x+5)
slopeintercept\:y+2=-2(x+5)
range of x^2+9
range\:x^{2}+9
extreme f(x)=5*sin(x-(5pi)/6)
extreme\:f(x)=5\cdot\:\sin(x-\frac{5π}{6})
symmetry-x^2-2x+1
symmetry\:-x^{2}-2x+1
range of f(x)=e^x+2
range\:f(x)=e^{x}+2
inverse of 5/(x+2)
inverse\:\frac{5}{x+2}
range of f(x)=3^x+1
range\:f(x)=3^{x}+1
domain of xsqrt(x-1)
domain\:x\sqrt{x-1}
domain of x/(x^2+25)
domain\:\frac{x}{x^{2}+25}
inverse of f(x)=x^2
inverse\:f(x)=x^{2}
asymptotes of 2+(-7)/(2x+1)
asymptotes\:2+\frac{-7}{2x+1}
extreme f(x)=x^2+9
extreme\:f(x)=x^{2}+9
inverse of f(x)=sqrt(x)+10
inverse\:f(x)=\sqrt{x}+10
intercepts of (12x^2)/(x^4+36)
intercepts\:\frac{12x^{2}}{x^{4}+36}
asymptotes of f(x)=(2x+18)/(x+4)
asymptotes\:f(x)=\frac{2x+18}{x+4}
inverse of 1/3 log_{10}(3x)
inverse\:\frac{1}{3}\log_{10}(3x)
inverse of f(x)=4sqrt(x-3)+9
inverse\:f(x)=4\sqrt{x-3}+9
inverse of f(x)=\sqrt[3]{x-13}
inverse\:f(x)=\sqrt[3]{x-13}
extreme f(x)=800x-2x^2
extreme\:f(x)=800x-2x^{2}
inflection-3x^4+24x^3-48x^2
inflection\:-3x^{4}+24x^{3}-48x^{2}
domain of f(x)=(2x+3)+cos(3x)
domain\:f(x)=(2x+3)+\cos(3x)
inverse of f(x)=3x^2-12x
inverse\:f(x)=3x^{2}-12x
domain of f(x)=\sqrt[3]{t-8}
domain\:f(x)=\sqrt[3]{t-8}
intercepts of f(x)=2x^3-x^2-8x+4
intercepts\:f(x)=2x^{3}-x^{2}-8x+4
monotone f(x)=-2x+6
monotone\:f(x)=-2x+6
domain of-(5x)/(x-2)
domain\:-\frac{5x}{x-2}
inverse of (x+1)/(2x-5)
inverse\:\frac{x+1}{2x-5}
inflection 7-x^2
inflection\:7-x^{2}
midpoint (-3,-1),(6,11)
midpoint\:(-3,-1),(6,11)
inverse of f(x)=1+ln(x)
inverse\:f(x)=1+\ln(x)
line x+3y-3=0
line\:x+3y-3=0
critical f(x)=x^4
critical\:f(x)=x^{4}
inflection f(x)=(x^2)/(x+4)
inflection\:f(x)=\frac{x^{2}}{x+4}
inverse of-sqrt(x-1)
inverse\:-\sqrt{x-1}
inverse of f(x)=\sqrt[16]{x}
inverse\:f(x)=\sqrt[16]{x}
intercepts of f(x)=x^2-3x+3
intercepts\:f(x)=x^{2}-3x+3
inverse of f(x)=3^x-1
inverse\:f(x)=3^{x}-1
monotone f(x)=4xsqrt(2x^2+4)
monotone\:f(x)=4x\sqrt{2x^{2}+4}
parity x^{cos(x)}
parity\:x^{\cos(x)}
inverse of f(x)= 5/(x-2)
inverse\:f(x)=\frac{5}{x-2}
domain of f(x)=(x+6)/(x^2-9)
domain\:f(x)=\frac{x+6}{x^{2}-9}
line (-2,-4),(5,-2)
line\:(-2,-4),(5,-2)
domain of f(x)=-2x+1
domain\:f(x)=-2x+1
parallel y= 2/5 x+2
parallel\:y=\frac{2}{5}x+2
range of (x-4)/(5-x)
range\:\frac{x-4}{5-x}
inverse of f(x)=sqrt(2x)
inverse\:f(x)=\sqrt{2x}
inverse of (2x-3)/(x+4)
inverse\:\frac{2x-3}{x+4}
domain of 6/(sqrt(8-x))
domain\:\frac{6}{\sqrt{8-x}}
domain of 0.52cos((2pi)/(11.608)x)+0.37
domain\:0.52\cos(\frac{2π}{11.608}x)+0.37
y=-2x+1
y=-2x+1
simplify (6)(-3.9)
simplify\:(6)(-3.9)
asymptotes of f(x)=(x+5)/(2x-7)
asymptotes\:f(x)=\frac{x+5}{2x-7}
1
..
223
224
225
226
227
..
1324