Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of (x^2-x-2)/(x^2-6x+9)
domain\:\frac{x^{2}-x-2}{x^{2}-6x+9}
critical f(x)=2x^3-21x^2+60x+3
critical\:f(x)=2x^{3}-21x^{2}+60x+3
domain of sqrt(x+4)+6
domain\:\sqrt{x+4}+6
parallel y=-1/2 x+5
parallel\:y=-\frac{1}{2}x+5
inverse of 3/(4-x)
inverse\:\frac{3}{4-x}
domain of sqrt(x+4)-(sqrt(7-x))/x
domain\:\sqrt{x+4}-\frac{\sqrt{7-x}}{x}
domain of f(x)=2x-6x^2
domain\:f(x)=2x-6x^{2}
critical f(x)= 1/(x-1)
critical\:f(x)=\frac{1}{x-1}
inverse of f(x)=(x+4)^{1/5}+3
inverse\:f(x)=(x+4)^{\frac{1}{5}}+3
inverse of F(X)=X^5
inverse\:F(X)=X^{5}
domain of f(x)=sqrt((7+2x)/x)
domain\:f(x)=\sqrt{\frac{7+2x}{x}}
domain of f(x)= 5/((\frac{11){x})+2}
domain\:f(x)=\frac{5}{(\frac{11}{x})+2}
periodicity of tan(x)
periodicity\:\tan(x)
domain of (1-2x)/(6+x)
domain\:\frac{1-2x}{6+x}
domain of sqrt(x^2+x-2)
domain\:\sqrt{x^{2}+x-2}
inverse of f(x)=-4x-39
inverse\:f(x)=-4x-39
f(x)=5^x
f(x)=5^{x}
extreme f(x)=(x+3)e^{-x}
extreme\:f(x)=(x+3)e^{-x}
extreme f(x)=((x^2))/(x-5)
extreme\:f(x)=\frac{(x^{2})}{x-5}
domain of f(x)=-2x^2+6x+10
domain\:f(x)=-2x^{2}+6x+10
symmetry y=2x^2-3x+4
symmetry\:y=2x^{2}-3x+4
domain of f(x)=4x+24
domain\:f(x)=4x+24
extreme ln(7-6x^2)
extreme\:\ln(7-6x^{2})
asymptotes of ((x^2-3x-4))/(x+2)
asymptotes\:\frac{(x^{2}-3x-4)}{x+2}
domain of y=-sqrt(x^2-1)
domain\:y=-\sqrt{x^{2}-1}
asymptotes of f(x)=(x^2-1)/(x+6)
asymptotes\:f(x)=\frac{x^{2}-1}{x+6}
domain of f(x)=2^x+2
domain\:f(x)=2^{x}+2
extreme f(x)=x+sqrt(1-x)
extreme\:f(x)=x+\sqrt{1-x}
parallel y=-6x+4
parallel\:y=-6x+4
range of f(x)= 3/((x^2-2x))
range\:f(x)=\frac{3}{(x^{2}-2x)}
monotone x^2-2x+3
monotone\:x^{2}-2x+3
domain of f(x)=5.5x+5.5
domain\:f(x)=5.5x+5.5
inverse of f(x)=1-cy
inverse\:f(x)=1-cy
parity f(x)=(x^4-x)/(x^5-x)
parity\:f(x)=\frac{x^{4}-x}{x^{5}-x}
range of f(x)=(1-x)/(x+2)
range\:f(x)=\frac{1-x}{x+2}
asymptotes of f(x)=1-ln(x)
asymptotes\:f(x)=1-\ln(x)
inflection f(x)=(x^2)/(2^x)
inflection\:f(x)=\frac{x^{2}}{2^{x}}
domain of f(x,y)=(5x)/(ln(x^2-4))
domain\:f(x,y)=\frac{5x}{\ln(x^{2}-4)}
range of sqrt(4x-5)
range\:\sqrt{4x-5}
y=4x+3
y=4x+3
domain of f(x)=2(3)^x
domain\:f(x)=2(3)^{x}
global 0.001x
global\:0.001x
slope of 7x+5y=12
slope\:7x+5y=12
y=3x^2
y=3x^{2}
intercepts of f(x)=-x^2+6x-8
intercepts\:f(x)=-x^{2}+6x-8
domain of (x^2-18)/6
domain\:\frac{x^{2}-18}{6}
inverse of \sqrt[3]{x}+2
inverse\:\sqrt[3]{x}+2
inverse of g(x)=x^2+6x
inverse\:g(x)=x^{2}+6x
parity 2cot(x)+sqrt(3)*csc(x)
parity\:2\cot(x)+\sqrt{3}\cdot\:\csc(x)
intercepts of f(x)=5x-1
intercepts\:f(x)=5x-1
symmetry-x^2-8x-9
symmetry\:-x^{2}-8x-9
line (4,5),(-2,0)
line\:(4,5),(-2,0)
parity 12cos(θ)
parity\:12\cos(θ)
inverse of (5-2x)/(6x-1)
inverse\:\frac{5-2x}{6x-1}
symmetry (x+2/3)^2-3
symmetry\:(x+\frac{2}{3})^{2}-3
symmetry x=y^3
symmetry\:x=y^{3}
midpoint (2,-3),(-1,9)
midpoint\:(2,-3),(-1,9)
inverse of f(x)=x^{1/5}+3
inverse\:f(x)=x^{\frac{1}{5}}+3
domain of f(x)=-16x^2+48x+100
domain\:f(x)=-16x^{2}+48x+100
inverse of f(x)=((x^{-0.03}-1))/(-0.03)
inverse\:f(x)=\frac{(x^{-0.03}-1)}{-0.03}
slope ofintercept y-3=3(x-6)
slopeintercept\:y-3=3(x-6)
asymptotes of f(x)=(-4x-12)/(x^2-9)
asymptotes\:f(x)=\frac{-4x-12}{x^{2}-9}
domain of x+33
domain\:x+33
y=log_{10}(x)
y=\log_{10}(x)
extreme f(x)=x^4(x-2)(x+3)
extreme\:f(x)=x^{4}(x-2)(x+3)
extreme x^4-4x^2
extreme\:x^{4}-4x^{2}
line (-8,-3),(0,3)
line\:(-8,-3),(0,3)
symmetry x=7y^2-5
symmetry\:x=7y^{2}-5
inverse of f(x)=((e^x))/(1+2e^x)
inverse\:f(x)=\frac{(e^{x})}{1+2e^{x}}
inflection f(x)=x^2e^{14x}
inflection\:f(x)=x^{2}e^{14x}
critical xsqrt(100-x^2)
critical\:x\sqrt{100-x^{2}}
inflection 1/(x^2-6x+8)
inflection\:\frac{1}{x^{2}-6x+8}
y=\sqrt[3]{x}
y=\sqrt[3]{x}
inverse of f(x)=sqrt(5x-25)
inverse\:f(x)=\sqrt{5x-25}
perpendicular 2x
perpendicular\:2x
inverse of (-x-2)/(x+4)
inverse\:\frac{-x-2}{x+4}
extreme f(x)=(2x)/(x^2+1)
extreme\:f(x)=\frac{2x}{x^{2}+1}
asymptotes of 6/((t-8))
asymptotes\:\frac{6}{(t-8)}
inverse of (-x+8)/3
inverse\:\frac{-x+8}{3}
range of f(x)=|1-x/2 |
range\:f(x)=\left|1-\frac{x}{2}\right|
inverse of f(x)=(8-10x)^{7/2}
inverse\:f(x)=(8-10x)^{\frac{7}{2}}
asymptotes of f(x)=(x^4)/(x^2+6)
asymptotes\:f(x)=\frac{x^{4}}{x^{2}+6}
simplify (2.5)(-4.7)
simplify\:(2.5)(-4.7)
domain of f(x)=(x+6)/(sqrt(-2-x))
domain\:f(x)=\frac{x+6}{\sqrt{-2-x}}
domain of-2x^2+12x-14
domain\:-2x^{2}+12x-14
domain of f(x)=(-2x+35)/(x^2+7x)
domain\:f(x)=\frac{-2x+35}{x^{2}+7x}
parity (0.9e^x)/(tan(x))
parity\:\frac{0.9e^{x}}{\tan(x)}
extreme f(x)=x^2+7x+9
extreme\:f(x)=x^{2}+7x+9
domain of (x+1)/(x^2-x-6)
domain\:\frac{x+1}{x^{2}-x-6}
domain of ((3x^3-x^2-27x+9))/(x^2+4x+3)
domain\:\frac{(3x^{3}-x^{2}-27x+9)}{x^{2}+4x+3}
intercepts of f(x)=16-x^2
intercepts\:f(x)=16-x^{2}
parallel x-y=-1
parallel\:x-y=-1
inverse of f(x)=10^{x/2}
inverse\:f(x)=10^{\frac{x}{2}}
inverse of f(x)=log_{7}(x)
inverse\:f(x)=\log_{7}(x)
simplify (7.4)(13.19)
simplify\:(7.4)(13.19)
inverse of (2x+5)/(x-3)
inverse\:\frac{2x+5}{x-3}
inverse of f(x)=3-2x^3
inverse\:f(x)=3-2x^{3}
symmetry-x^3-x
symmetry\:-x^{3}-x
domain of f(x)=(2x+8)/(-3x-12)
domain\:f(x)=\frac{2x+8}{-3x-12}
inverse of f(x)=(10+3x)/2
inverse\:f(x)=\frac{10+3x}{2}
1
..
225
226
227
228
229
..
1324