Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
distance (-2,6),(3,3)
distance\:(-2,6),(3,3)
asymptotes of f(x)=(x-4)/(x+2)
asymptotes\:f(x)=\frac{x-4}{x+2}
domain of f(x)= 1/(2x+9)
domain\:f(x)=\frac{1}{2x+9}
domain of f(x)=(8x)/(x^2-1)
domain\:f(x)=\frac{8x}{x^{2}-1}
asymptotes of g(x)=x^2-5x+5
asymptotes\:g(x)=x^{2}-5x+5
domain of f(x)=sqrt(-x-8)
domain\:f(x)=\sqrt{-x-8}
inverse of f(x)=(x-1)
inverse\:f(x)=(x-1)
domain of (5-x)/(x^2-3x)
domain\:\frac{5-x}{x^{2}-3x}
domain of (x^2+x-2)/(x^2-1)
domain\:\frac{x^{2}+x-2}{x^{2}-1}
domain of f(x)=4x-6
domain\:f(x)=4x-6
inverse of f(x)=2^{3-x}
inverse\:f(x)=2^{3-x}
intercepts of y=-3(x+5)^2-4
intercepts\:y=-3(x+5)^{2}-4
extreme f(x)=8x-4x^2
extreme\:f(x)=8x-4x^{2}
domain of-x^2+4x-3
domain\:-x^{2}+4x-3
range of (9x)/(3-x)
range\:\frac{9x}{3-x}
inverse of 2^{3-x}-7
inverse\:2^{3-x}-7
intercepts of f(x)=2x-y=4
intercepts\:f(x)=2x-y=4
intercepts of f(x)=(-3x+9)/(x^2+x-12)
intercepts\:f(x)=\frac{-3x+9}{x^{2}+x-12}
parallel y=4-2x,(2,-1)
parallel\:y=4-2x,(2,-1)
domain of-sqrt(x^2+4)
domain\:-\sqrt{x^{2}+4}
perpendicular y=3x+3
perpendicular\:y=3x+3
inverse of f(x)=x^4+8
inverse\:f(x)=x^{4}+8
inflection sin(2x)
inflection\:\sin(2x)
range of 2x(x-1)
range\:2x(x-1)
domain of f(x)=-16t^2+64t+720
domain\:f(x)=-16t^{2}+64t+720
parallel y=4x+6
parallel\:y=4x+6
range of (2x^2-3)/(x^2)
range\:\frac{2x^{2}-3}{x^{2}}
range of sqrt(-x-3)
range\:\sqrt{-x-3}
periodicity of y=5sin(-2x-pi/2)
periodicity\:y=5\sin(-2x-\frac{π}{2})
inverse of f(x)=\sqrt[4]{x}-6
inverse\:f(x)=\sqrt[4]{x}-6
domain of f(x)=\sqrt[3]{2x-3}
domain\:f(x)=\sqrt[3]{2x-3}
domain of 6x^2+3
domain\:6x^{2}+3
parity f(x)=2x^3-x^2
parity\:f(x)=2x^{3}-x^{2}
intercepts of y=x^2-9
intercepts\:y=x^{2}-9
parity y=(tan^2(3x^2-5))/((4x^2-3x))
parity\:y=\frac{\tan^{2}(3x^{2}-5)}{(4x^{2}-3x)}
domain of f(x)=(2x)/(6-x^2)
domain\:f(x)=\frac{2x}{6-x^{2}}
simplify (0)(4.2)
simplify\:(0)(4.2)
parity f(x)=-6x^4+7x^2
parity\:f(x)=-6x^{4}+7x^{2}
slope of 7x+3y=63
slope\:7x+3y=63
f(x)=x^2-6x+10
f(x)=x^{2}-6x+10
inverse of 5/4 x+5/4
inverse\:\frac{5}{4}x+\frac{5}{4}
shift f(x)=5cos(6x+pi/2)
shift\:f(x)=5\cos(6x+\frac{π}{2})
inverse of x/(x^2-4)
inverse\:\frac{x}{x^{2}-4}
asymptotes of f(x)=(6x)/(x^2-16)
asymptotes\:f(x)=\frac{6x}{x^{2}-16}
distance (-1,3),(2,-2)
distance\:(-1,3),(2,-2)
domain of f(x)=(x-4)^2-9
domain\:f(x)=(x-4)^{2}-9
extreme f(x)=-x^2+5x-3
extreme\:f(x)=-x^{2}+5x-3
asymptotes of f(x)=1+1/x+1/(x^2)
asymptotes\:f(x)=1+\frac{1}{x}+\frac{1}{x^{2}}
intercepts of 3x^2+6x+2
intercepts\:3x^{2}+6x+2
inverse of f(x)=8-x
inverse\:f(x)=8-x
line m=3,(2,0)
line\:m=3,(2,0)
domain of f(x)=ln(x-9)
domain\:f(x)=\ln(x-9)
extreme f(x)=x^3-2x^2-4x+8
extreme\:f(x)=x^{3}-2x^{2}-4x+8
perpendicular y=-5x,(25,9)
perpendicular\:y=-5x,(25,9)
periodicity of 5cos(4x)
periodicity\:5\cos(4x)
inverse of f(x)=(x-8)/5
inverse\:f(x)=\frac{x-8}{5}
inverse of f(x)=(x+14)/(x-7)
inverse\:f(x)=\frac{x+14}{x-7}
domain of (x^2+1)/(x^2-1)
domain\:\frac{x^{2}+1}{x^{2}-1}
extreme f(x)=x^4-24x^2
extreme\:f(x)=x^{4}-24x^{2}
domain of y=(x/(x-1))
domain\:y=(\frac{x}{x-1})
critical t/(t-3)
critical\:\frac{t}{t-3}
range of f(x)=x^2-4x+3
range\:f(x)=x^{2}-4x+3
domain of f(x)=sqrt(9+4x)
domain\:f(x)=\sqrt{9+4x}
asymptotes of f(x)=x*e^{1/x}
asymptotes\:f(x)=x\cdot\:e^{\frac{1}{x}}
domain of f(x)=(x+5)/4
domain\:f(x)=\frac{x+5}{4}
slope ofintercept y+5=-1/5 (x+1)
slopeintercept\:y+5=-\frac{1}{5}(x+1)
domain of (x-1)/(x+3)
domain\:\frac{x-1}{x+3}
distance (9,-8),(8,-9)
distance\:(9,-8),(8,-9)
inverse of f(x)=(125)/(0.5)
inverse\:f(x)=\frac{125}{0.5}
extreme f(x)=x^2-4x+8
extreme\:f(x)=x^{2}-4x+8
slope of x+5+y=0
slope\:x+5+y=0
asymptotes of f(x)=2^x+4
asymptotes\:f(x)=2^{x}+4
inflection f(x)=(x-4)/(3x-x^2)
inflection\:f(x)=\frac{x-4}{3x-x^{2}}
asymptotes of 1/(x^2-9)
asymptotes\:\frac{1}{x^{2}-9}
inverse of f(x)=(x^5-10)^{1/3}
inverse\:f(x)=(x^{5}-10)^{\frac{1}{3}}
asymptotes of (x^2+2x)/(x-1)
asymptotes\:\frac{x^{2}+2x}{x-1}
simplify (1.1)(7.9)
simplify\:(1.1)(7.9)
asymptotes of f(x)=(x-5)/(x^2-11x+30)
asymptotes\:f(x)=\frac{x-5}{x^{2}-11x+30}
domain of 4x+1
domain\:4x+1
inverse of-3x+1
inverse\:-3x+1
domain of f(x)=5x^2+4x-9
domain\:f(x)=5x^{2}+4x-9
inverse of f(x)=-x^2-2,x>= 0
inverse\:f(x)=-x^{2}-2,x\ge\:0
range of (10)/(sqrt(1-x))
range\:\frac{10}{\sqrt{1-x}}
symmetry 1/4 x^2
symmetry\:\frac{1}{4}x^{2}
extreme (x-1)/(x^2)
extreme\:\frac{x-1}{x^{2}}
line y=-2x
line\:y=-2x
asymptotes of f(x)=2x
asymptotes\:f(x)=2x
extreme f(x)=x^4-8x^2+3
extreme\:f(x)=x^{4}-8x^{2}+3
extreme 4x^3-48x
extreme\:4x^{3}-48x
extreme (8-x^3)/(2x^2)
extreme\:\frac{8-x^{3}}{2x^{2}}
parallel y=x+9
parallel\:y=x+9
asymptotes of e^x
asymptotes\:e^{x}
inflection f(x)=x^5-5x
inflection\:f(x)=x^{5}-5x
domain of |x-10|
domain\:\left|x-10\right|
range of ln(x)+7
range\:\ln(x)+7
line (3,-8),(6,-4)
line\:(3,-8),(6,-4)
line (-3,1),(-1,-2)
line\:(-3,1),(-1,-2)
intercepts of (12x+65)/((x+4)^2)
intercepts\:\frac{12x+65}{(x+4)^{2}}
domain of ln(2x-1)
domain\:\ln(2x-1)
domain of f(x)=sqrt(6x-48)
domain\:f(x)=\sqrt{6x-48}
1
..
252
253
254
255
256
..
1324