Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=-(x+2)^2-7
inverse\:f(x)=-(x+2)^{2}-7
domain of f(x)= 6/(sqrt(x^2-4))
domain\:f(x)=\frac{6}{\sqrt{x^{2}-4}}
asymptotes of f(x)=(4x+13)/(-3x)
asymptotes\:f(x)=\frac{4x+13}{-3x}
range of 14
range\:14
intercepts of log_{5}(3-x)+2
intercepts\:\log_{5}(3-x)+2
critical f(x)= x/(x^2+4)
critical\:f(x)=\frac{x}{x^{2}+4}
range of (7x)/(8x-3)
range\:\frac{7x}{8x-3}
domain of (x+2)/(x-6)
domain\:\frac{x+2}{x-6}
range of f(x)=(x^2+x-12)/(x-3)
range\:f(x)=\frac{x^{2}+x-12}{x-3}
inverse of f(x)=10-x^2
inverse\:f(x)=10-x^{2}
monotone (4x^3)/((x-4)^2(x+2))
monotone\:\frac{4x^{3}}{(x-4)^{2}(x+2)}
slope of-3x+5y=2x+3y
slope\:-3x+5y=2x+3y
inverse of f(x)=(x^3-1)^5
inverse\:f(x)=(x^{3}-1)^{5}
inverse of f(x)=x^7-4
inverse\:f(x)=x^{7}-4
asymptotes of f(x)=(2x-3)/(3x+4)
asymptotes\:f(x)=\frac{2x-3}{3x+4}
asymptotes of y=(7x^2+1)/(x^2+7)
asymptotes\:y=\frac{7x^{2}+1}{x^{2}+7}
y=xe^x
y=xe^{x}
domain of f(x)=(3x-4)/(7-x)
domain\:f(x)=\frac{3x-4}{7-x}
domain of arcsin(t)
domain\:\arcsin(t)
critical 48x-4x^2
critical\:48x-4x^{2}
domain of f(x)= 9/(5/x-1)
domain\:f(x)=\frac{9}{\frac{5}{x}-1}
domain of (2x^2-4x)/(x^2+4x+4)
domain\:\frac{2x^{2}-4x}{x^{2}+4x+4}
inverse of f(x)=x^2-6x
inverse\:f(x)=x^{2}-6x
inverse of f(x)= 1/(sqrt(x^2+6))
inverse\:f(x)=\frac{1}{\sqrt{x^{2}+6}}
inverse of f(x)=\sqrt[4]{x-2}
inverse\:f(x)=\sqrt[4]{x-2}
inverse of f(x)=9+(6+x)^{1/2}
inverse\:f(x)=9+(6+x)^{\frac{1}{2}}
inflection x^2+4x+2
inflection\:x^{2}+4x+2
domain of X^2
domain\:X^{2}
domain of f(x)=(sqrt(5-x))-(sqrt(x^2-4))
domain\:f(x)=(\sqrt{5-x})-(\sqrt{x^{2}-4})
intercepts of f(x)=2x^2-6x+10
intercepts\:f(x)=2x^{2}-6x+10
slope ofintercept 5x+3y=12
slopeintercept\:5x+3y=12
domain of f(x)=(6x)/6
domain\:f(x)=\frac{6x}{6}
domain of f(x)= 1/2 x-9/2
domain\:f(x)=\frac{1}{2}x-\frac{9}{2}
range of 2+sqrt(3+2x-x^2)
range\:2+\sqrt{3+2x-x^{2}}
periodicity of f(x)=-cos((2x)/5)
periodicity\:f(x)=-\cos(\frac{2x}{5})
inverse of f(x)=(x-7)^2+8
inverse\:f(x)=(x-7)^{2}+8
intercepts of f(x)= 6/7 x-2
intercepts\:f(x)=\frac{6}{7}x-2
simplify (1.6)(0.8)
simplify\:(1.6)(0.8)
slope of f(x)=10x-5
slope\:f(x)=10x-5
range of (-4)/(x^2)+1
range\:\frac{-4}{x^{2}}+1
domain of f(x)=(sqrt(1+x))/(7-x)
domain\:f(x)=\frac{\sqrt{1+x}}{7-x}
extreme f(x)=3x^4-18x^2
extreme\:f(x)=3x^{4}-18x^{2}
asymptotes of f(x)= 1/4 tan(6x)
asymptotes\:f(x)=\frac{1}{4}\tan(6x)
range of (x-1)^2+6
range\:(x-1)^{2}+6
extreme f(x)=7x+5/(x+2)
extreme\:f(x)=7x+\frac{5}{x+2}
inflection x^4-7x^3
inflection\:x^{4}-7x^{3}
domain of 5/(x-7)
domain\:\frac{5}{x-7}
periodicity of sin(7x)
periodicity\:\sin(7x)
perpendicular 6x-9y=-54
perpendicular\:6x-9y=-54
intercepts of f(x)=(x+3)/(x^2-9)
intercepts\:f(x)=\frac{x+3}{x^{2}-9}
asymptotes of f(x)=(6/5)^{-x}
asymptotes\:f(x)=(\frac{6}{5})^{-x}
inverse of f(x)=3x^5
inverse\:f(x)=3x^{5}
intercepts of f(x)=2-3cos(pix-3/2 pi)
intercepts\:f(x)=2-3\cos(πx-\frac{3}{2}π)
parity f(x)=6
parity\:f(x)=6
range of sin(x)cos(x)
range\:\sin(x)\cos(x)
intercepts of (x^2-5x+4)/(x+1)
intercepts\:\frac{x^{2}-5x+4}{x+1}
intercepts of f(x)= 6/(1+0.8e^{-2x)}
intercepts\:f(x)=\frac{6}{1+0.8e^{-2x}}
parity (x^n+2)/(x^{2n)-4}
parity\:\frac{x^{n}+2}{x^{2n}-4}
inflection (e^x-e^{-x})/3
inflection\:\frac{e^{x}-e^{-x}}{3}
inflection f(x)=(e^x)/(6+e^x)
inflection\:f(x)=\frac{e^{x}}{6+e^{x}}
inverse of f(x)=3log_{3}(x+3)+1
inverse\:f(x)=3\log_{3}(x+3)+1
extreme f(x)=2x^{4x}
extreme\:f(x)=2x^{4x}
domain of f(x)=-2(x+3)^2-1
domain\:f(x)=-2(x+3)^{2}-1
inverse of f(x)=log_{6}(2x)+log_{6}(3)
inverse\:f(x)=\log_{6}(2x)+\log_{6}(3)
inverse of f(x)=x^2-7x
inverse\:f(x)=x^{2}-7x
inverse of f(x)= x/5-3/5
inverse\:f(x)=\frac{x}{5}-\frac{3}{5}
parallel-2/5 x+4
parallel\:-\frac{2}{5}x+4
inverse of f(x)=2sqrt(4-x)
inverse\:f(x)=2\sqrt{4-x}
domain of f(x)=sqrt(5-x)-sqrt(x^2-9)
domain\:f(x)=\sqrt{5-x}-\sqrt{x^{2}-9}
parity f(x)=-2x^2
parity\:f(x)=-2x^{2}
m=4
m=4
extreme f(x)=x^3-27x+8
extreme\:f(x)=x^{3}-27x+8
inverse of f(x)= 2/(3x+2)
inverse\:f(x)=\frac{2}{3x+2}
range of 2/(x^3+1)
range\:\frac{2}{x^{3}+1}
periodicity of y=sec(-pi/4)
periodicity\:y=\sec(-\frac{π}{4})
f(x)=x^2+3x+2
f(x)=x^{2}+3x+2
inverse of arcsec(1/x)
inverse\:\arcsec(\frac{1}{x})
extreme f(x)= x/(x-3)
extreme\:f(x)=\frac{x}{x-3}
inverse of-5x+3
inverse\:-5x+3
simplify (-15.8)(-4.11)
simplify\:(-15.8)(-4.11)
slope ofintercept 7x+2y=11
slopeintercept\:7x+2y=11
inflection f(x)=4x^3-6x^2+8x-5
inflection\:f(x)=4x^{3}-6x^{2}+8x-5
inverse of sqrt(3x-1)
inverse\:\sqrt{3x-1}
inverse of y=(e^x+e^{-x})/2
inverse\:y=\frac{e^{x}+e^{-x}}{2}
shift 4cos(3x-1/2 pi)
shift\:4\cos(3x-\frac{1}{2}π)
asymptotes of f(x)=(x^2-8x+15)/(x^2-1)
asymptotes\:f(x)=\frac{x^{2}-8x+15}{x^{2}-1}
inverse of f(x)=(4x-5)/3
inverse\:f(x)=\frac{4x-5}{3}
intercepts of (-3x)/(2x+5)
intercepts\:\frac{-3x}{2x+5}
asymptotes of f(x)=3^{x+1}-4
asymptotes\:f(x)=3^{x+1}-4
range of-tan(x+7)-3
range\:-\tan(x+7)-3
asymptotes of f(x)=((x^3))/((x^2-1))
asymptotes\:f(x)=\frac{(x^{3})}{(x^{2}-1)}
slope of y= 1/5 x+5
slope\:y=\frac{1}{5}x+5
amplitude of sin(8x)
amplitude\:\sin(8x)
domain of (5-x)/(x(x-3))
domain\:\frac{5-x}{x(x-3)}
line (-4,1),(3,1)
line\:(-4,1),(3,1)
slope ofintercept-5/4
slopeintercept\:-\frac{5}{4}
monotone x^2+2x+1
monotone\:x^{2}+2x+1
distance (3,8),(-1,1)
distance\:(3,8),(-1,1)
asymptotes of (50k^2+30k)/(30k^2-100k)
asymptotes\:\frac{50k^{2}+30k}{30k^{2}-100k}
midpoint (2,-2),(-4,6)
midpoint\:(2,-2),(-4,6)
1
..
412
413
414
415
416
..
1324