Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of f(x)=(5x)/(x-5)
intercepts\:f(x)=\frac{5x}{x-5}
inverse of f(x)=(16-5x)/(3x)
inverse\:f(x)=\frac{16-5x}{3x}
domain of x/(x^2-6x+8)
domain\:\frac{x}{x^{2}-6x+8}
domain of f(x)= 4/(x^2)
domain\:f(x)=\frac{4}{x^{2}}
intercepts of f(x)=x^2-2x+1
intercepts\:f(x)=x^{2}-2x+1
asymptotes of f(x)=(2x^2+8x+8)/(x^3+8)
asymptotes\:f(x)=\frac{2x^{2}+8x+8}{x^{3}+8}
critical f
critical\:f
domain of f(x)=(x/(x+1))/(x^3)
domain\:f(x)=\frac{\frac{x}{x+1}}{x^{3}}
inverse of f(x)=ln(2x-1)
inverse\:f(x)=\ln(2x-1)
range of f(x)=\sqrt[3]{x-9}
range\:f(x)=\sqrt[3]{x-9}
domain of y=(sqrt(x))/(3x^2+2x-1)
domain\:y=\frac{\sqrt{x}}{3x^{2}+2x-1}
slope ofintercept 6x+15y=-15
slopeintercept\:6x+15y=-15
intercepts of f(x)=-x^2+6x-5
intercepts\:f(x)=-x^{2}+6x-5
critical 2x^4-4x^2+6
critical\:2x^{4}-4x^{2}+6
slope of 2x-5y=10
slope\:2x-5y=10
domain of f(x)=-5/(2t^{3/2)}
domain\:f(x)=-\frac{5}{2t^{\frac{3}{2}}}
asymptotes of f(x)=(2x-6)/(x^2-6x+8)
asymptotes\:f(x)=\frac{2x-6}{x^{2}-6x+8}
inverse of f(x)= 1/(x+3)+2
inverse\:f(x)=\frac{1}{x+3}+2
critical f(x)=(x+5)/(x+3)
critical\:f(x)=\frac{x+5}{x+3}
parity y=(1/(x+1/3+Ce^{3x)})^{1/3}
parity\:y=(\frac{1}{x+\frac{1}{3}+Ce^{3x}})^{\frac{1}{3}}
domain of f(x)=\sqrt[3]{2x+10}
domain\:f(x)=\sqrt[3]{2x+10}
asymptotes of f(x)=(7x)/(x^2-2x-3)
asymptotes\:f(x)=\frac{7x}{x^{2}-2x-3}
inverse of f(x)=7(x+5)^3-6
inverse\:f(x)=7(x+5)^{3}-6
range of 2/(x^2-2x-3)
range\:\frac{2}{x^{2}-2x-3}
range of 3(x-1)^2-2
range\:3(x-1)^{2}-2
inflection (x-x^2)/((x+1)^2)
inflection\:\frac{x-x^{2}}{(x+1)^{2}}
inverse of y=sqrt(x+2)+3
inverse\:y=\sqrt{x+2}+3
midpoint (2,0),(0,-2)
midpoint\:(2,0),(0,-2)
shift 4sin(3pi-2pix)-7pi
shift\:4\sin(3π-2πx)-7π
extreme f(x)=3x^3-81x
extreme\:f(x)=3x^{3}-81x
intercepts of f(x)= 3/(x-2)
intercepts\:f(x)=\frac{3}{x-2}
domain of f(x)=(3x-1)/(sqrt(x^2+1))
domain\:f(x)=\frac{3x-1}{\sqrt{x^{2}+1}}
parity f(x)=-4x^3-2x
parity\:f(x)=-4x^{3}-2x
inflection xsqrt(x+1)
inflection\:x\sqrt{x+1}
inverse of f(x)=11cos(2x)+5
inverse\:f(x)=11\cos(2x)+5
midpoint (1,5),(7,-1)
midpoint\:(1,5),(7,-1)
domain of \sqrt[3]{x}+2
domain\:\sqrt[3]{x}+2
range of 3x^3+7x-3
range\:3x^{3}+7x-3
periodicity of f(x)=6sin(3x-pi)
periodicity\:f(x)=6\sin(3x-π)
extreme f(x)=(10-4e^{-x})
extreme\:f(x)=(10-4e^{-x})
shift 10+8csc(pi/3 x+pi/4)
shift\:10+8\csc(\frac{π}{3}x+\frac{π}{4})
domain of 1/(x-8)
domain\:\frac{1}{x-8}
parity f(x)=x^3-x
parity\:f(x)=x^{3}-x
domain of 4/(3-x)
domain\:\frac{4}{3-x}
domain of f(x)=sqrt(cos(x))
domain\:f(x)=\sqrt{\cos(x)}
inverse of f(x)=-1/3 x+3
inverse\:f(x)=-\frac{1}{3}x+3
asymptotes of f(x)=(6x-1)/(3x-6)
asymptotes\:f(x)=\frac{6x-1}{3x-6}
asymptotes of f(x)=log_{5}(x+3)
asymptotes\:f(x)=\log_{5}(x+3)
asymptotes of e^{-x}-2
asymptotes\:e^{-x}-2
domain of sqrt(2-\sqrt{p)}
domain\:\sqrt{2-\sqrt{p}}
domain of f(x)=(sqrt(x))/((x+3)(x-2))
domain\:f(x)=\frac{\sqrt{x}}{(x+3)(x-2)}
inverse of g(x)=2x
inverse\:g(x)=2x
distance (-2,-3),(-10,0)
distance\:(-2,-3),(-10,0)
perpendicular y=-2x+8
perpendicular\:y=-2x+8
intercepts of f(x)=3x^2-18x+26
intercepts\:f(x)=3x^{2}-18x+26
parallel Y(x)=-1/3 x+6,(-6,0)
parallel\:Y(x)=-\frac{1}{3}x+6,(-6,0)
intercepts of f(x)=2x^3-2x^2-7x+3
intercepts\:f(x)=2x^{3}-2x^{2}-7x+3
asymptotes of f(x)=((2x^2))/((x^2+5x+4))
asymptotes\:f(x)=\frac{(2x^{2})}{(x^{2}+5x+4)}
extreme sin(t)-(cos(t)+sin(t))
extreme\:\sin(t)-(\cos(t)+\sin(t))
asymptotes of f(x)=3arctan(2x)
asymptotes\:f(x)=3\arctan(2x)
inverse of f(x)=(x+4)/(x+6)
inverse\:f(x)=\frac{x+4}{x+6}
parity tan(x)sin(x)+sec(x)cos(2)(x)
parity\:\tan(x)\sin(x)+\sec(x)\cos(2)(x)
range of f(x)=x^2+6x+3
range\:f(x)=x^{2}+6x+3
parallel x-3y+3
parallel\:x-3y+3
asymptotes of 4^{-x}+4
asymptotes\:4^{-x}+4
domain of g(x)=sqrt(x)
domain\:g(x)=\sqrt{x}
inverse of f(x)=log_{2}(x-3)
inverse\:f(x)=\log_{2}(x-3)
inverse of f(x)=(x+3)/4
inverse\:f(x)=\frac{x+3}{4}
\begin{pmatrix}98&\end{pmatrix}\begin{pmatrix}&63\end{pmatrix}
range of f(x)=(x^2)/(x^2-16)
range\:f(x)=\frac{x^{2}}{x^{2}-16}
parallel x=-5,(6,-6)
parallel\:x=-5,(6,-6)
inverse of f(x)=17+\sqrt[3]{x}
inverse\:f(x)=17+\sqrt[3]{x}
inverse of f(x)= 8/x
inverse\:f(x)=\frac{8}{x}
inverse of 1+1/(x-1)
inverse\:1+\frac{1}{x-1}
range of 3+(8+x)^{1/2}
range\:3+(8+x)^{\frac{1}{2}}
domain of f(x)= 2/(6x^2+13x-5)
domain\:f(x)=\frac{2}{6x^{2}+13x-5}
parity 3cos(4x)
parity\:3\cos(4x)
simplify (6.8)(10.4)
simplify\:(6.8)(10.4)
domain of (-3x^2-12x-9)/(x^2+5x+4)
domain\:\frac{-3x^{2}-12x-9}{x^{2}+5x+4}
range of sqrt(49-x^2)
range\:\sqrt{49-x^{2}}
inverse of f(x)=80-4.9t^2
inverse\:f(x)=80-4.9t^{2}
asymptotes of (4x^2+1)/(2x^2+5x-3)
asymptotes\:\frac{4x^{2}+1}{2x^{2}+5x-3}
shift y=4cos(pix+pi/2)
shift\:y=4\cos(πx+\frac{π}{2})
domain of (x+2)/x
domain\:\frac{x+2}{x}
intercepts of y=(x-1)^2+2
intercepts\:y=(x-1)^{2}+2
domain of f(x)=sqrt(6/(x-5))
domain\:f(x)=\sqrt{\frac{6}{x-5}}
slope ofintercept 2x+y=4
slopeintercept\:2x+y=4
range of (x^2+5)/(x^2-3)
range\:\frac{x^{2}+5}{x^{2}-3}
inverse of (-3x)/(3x-4)
inverse\:\frac{-3x}{3x-4}
inverse of f(x)=(9x-8)/(2-x)
inverse\:f(x)=\frac{9x-8}{2-x}
distance (-2,-6),(-7,1)
distance\:(-2,-6),(-7,1)
domain of f(x)= x/(1+2x^2)
domain\:f(x)=\frac{x}{1+2x^{2}}
intercepts of f(x)=(15-3x)/(x^2-8x+15)
intercepts\:f(x)=\frac{15-3x}{x^{2}-8x+15}
inverse of f(x)= 1/2 x-7
inverse\:f(x)=\frac{1}{2}x-7
parity f(x)=-2x^5-2x^3-x
parity\:f(x)=-2x^{5}-2x^{3}-x
range of f(x)=x+6
range\:f(x)=x+6
extreme f(x)=2-4x+2x^2
extreme\:f(x)=2-4x+2x^{2}
domain of f(x)=8x-5
domain\:f(x)=8x-5
midpoint (-7/2 ,-7/2),(-1/2 ,-3/2)
midpoint\:(-\frac{7}{2},-\frac{7}{2}),(-\frac{1}{2},-\frac{3}{2})
asymptotes of (2x+6)/(x^2+4x+3)
asymptotes\:\frac{2x+6}{x^{2}+4x+3}
1
..
410
411
412
413
414
..
1324