Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=-sqrt(x)
range\:f(x)=-\sqrt{x}
domain of f(x)=(10x^2+35x)/(49x^2-28x+4)
domain\:f(x)=\frac{10x^{2}+35x}{49x^{2}-28x+4}
domain of f(x)=ln(x^2-x-20)
domain\:f(x)=\ln(x^{2}-x-20)
slope of 4x-3y=12
slope\:4x-3y=12
asymptotes of f(x)=(3x^2+6)/(x^2-2x-3)
asymptotes\:f(x)=\frac{3x^{2}+6}{x^{2}-2x-3}
inverse of f(x)=(x+2)/(5x-1)
inverse\:f(x)=\frac{x+2}{5x-1}
extreme f(x)=x^4-3x^2
extreme\:f(x)=x^{4}-3x^{2}
asymptotes of f(x)=(2x+8)/(x^2+3x-4)
asymptotes\:f(x)=\frac{2x+8}{x^{2}+3x-4}
inverse of log_{10}(2x+5)
inverse\:\log_{10}(2x+5)
inverse of f(x)=(9x+4)/(x-7)
inverse\:f(x)=\frac{9x+4}{x-7}
inverse of f(x)=\sqrt[3]{x^2-5x-4}
inverse\:f(x)=\sqrt[3]{x^{2}-5x-4}
parallel y=7x-8,(5,-2)
parallel\:y=7x-8,(5,-2)
domain of f(x)= 3/(2x-5)
domain\:f(x)=\frac{3}{2x-5}
domain of 2+sqrt(x-1)
domain\:2+\sqrt{x-1}
intercepts of 2/x
intercepts\:\frac{2}{x}
domain of f(x)=x*35+5
domain\:f(x)=x\cdot\:35+5
amplitude of 3sin(pix)
amplitude\:3\sin(πx)
intercepts of f(x)=-2x^2-4x-1
intercepts\:f(x)=-2x^{2}-4x-1
domain of f(x)=1+x-x^2-x^3
domain\:f(x)=1+x-x^{2}-x^{3}
amplitude of 3/4 cos(x)
amplitude\:\frac{3}{4}\cos(x)
domain of sqrt(4-x)+2
domain\:\sqrt{4-x}+2
domain of f(x)=(x^2+x-12)/(x-3)
domain\:f(x)=\frac{x^{2}+x-12}{x-3}
distance (-1,4),(2,2)
distance\:(-1,4),(2,2)
domain of f(x)=-3/(x+1)-1
domain\:f(x)=-\frac{3}{x+1}-1
domain of f(x)=sqrt((x+3)/(x-2))
domain\:f(x)=\sqrt{\frac{x+3}{x-2}}
slope ofintercept x+2y-4=0
slopeintercept\:x+2y-4=0
asymptotes of f(x)= 5/(x-7)
asymptotes\:f(x)=\frac{5}{x-7}
domain of f(x)=(x+5)^2
domain\:f(x)=(x+5)^{2}
asymptotes of f(x)= 1/(81-x^2)
asymptotes\:f(x)=\frac{1}{81-x^{2}}
asymptotes of 2+log_{3}(x)
asymptotes\:2+\log_{3}(x)
parity f(x)=sec(x)
parity\:f(x)=\sec(x)
line y=x+3
line\:y=x+3
extreme f(x)=-x^2-8x-3
extreme\:f(x)=-x^{2}-8x-3
line (12,-15),(7,-5)
line\:(12,-15),(7,-5)
inverse of-2/5 x+3
inverse\:-\frac{2}{5}x+3
line (-1,7),(2,-2)
line\:(-1,7),(2,-2)
asymptotes of (3x-21)/(x^2-3x-28)
asymptotes\:\frac{3x-21}{x^{2}-3x-28}
domain of f(x)= x/(x-7)
domain\:f(x)=\frac{x}{x-7}
asymptotes of f(x)= 2/(-x+2)
asymptotes\:f(x)=\frac{2}{-x+2}
critical 1/(x-2)
critical\:\frac{1}{x-2}
intercepts of 3/((x+3)^2)
intercepts\:\frac{3}{(x+3)^{2}}
line (-2,-5),(-1,-3)
line\:(-2,-5),(-1,-3)
distance (-4,2),(-2,-5)
distance\:(-4,2),(-2,-5)
slope ofintercept 4x-4y=-8
slopeintercept\:4x-4y=-8
distance (-3,-8),(0,0)
distance\:(-3,-8),(0,0)
domain of x^{14}
domain\:x^{14}
domain of f(x)= 5/(2x^{3/2)}
domain\:f(x)=\frac{5}{2x^{\frac{3}{2}}}
parity f(x)=cot(x)
parity\:f(x)=\cot(x)
domain of f(x)=sqrt(-3x-2)
domain\:f(x)=\sqrt{-3x-2}
asymptotes of y=((x-5))/((x+2))
asymptotes\:y=\frac{(x-5)}{(x+2)}
asymptotes of x^3-2x^2-4x
asymptotes\:x^{3}-2x^{2}-4x
inflection xsqrt(x+27)
inflection\:x\sqrt{x+27}
domain of f(x)=sqrt(5x-7)
domain\:f(x)=\sqrt{5x-7}
domain of (8+x)/(1-8x)
domain\:\frac{8+x}{1-8x}
f(x)=x^2+2x+1
f(x)=x^{2}+2x+1
domain of f(x)=1+1/(2sqrt(x))
domain\:f(x)=1+\frac{1}{2\sqrt{x}}
inverse of (sqrt(2))/2
inverse\:\frac{\sqrt{2}}{2}
asymptotes of y=-2(5)^x
asymptotes\:y=-2(5)^{x}
asymptotes of (-2x+6)/(x^2-9)
asymptotes\:\frac{-2x+6}{x^{2}-9}
parity f(x)=9x^2-5x
parity\:f(x)=9x^{2}-5x
domain of 3-2x
domain\:3-2x
extreme (14x)/((1+x^2)^2)
extreme\:\frac{14x}{(1+x^{2})^{2}}
midpoint (9,8),(-3,-10)
midpoint\:(9,8),(-3,-10)
asymptotes of (x^2-4x-5)/(2x^2-x-10)
asymptotes\:\frac{x^{2}-4x-5}{2x^{2}-x-10}
domain of (2x)/(sqrt(3x-1))
domain\:\frac{2x}{\sqrt{3x-1}}
domain of f(x)=4x^2-3x+1
domain\:f(x)=4x^{2}-3x+1
domain of sqrt(-x+6)
domain\:\sqrt{-x+6}
extreme f(x)=x^3-9x^2+2
extreme\:f(x)=x^{3}-9x^{2}+2
inverse of y=5^x
inverse\:y=5^{x}
slope of y=-4x+3
slope\:y=-4x+3
extreme f(x)=x+4/x
extreme\:f(x)=x+\frac{4}{x}
amplitude of f(x)=-cos(-x)+4
amplitude\:f(x)=-\cos(-x)+4
line y=4x+3
line\:y=4x+3
domain of f(x)= 3/(3/x-5)
domain\:f(x)=\frac{3}{\frac{3}{x}-5}
domain of f(x)= 1/(x^2+4x-12)
domain\:f(x)=\frac{1}{x^{2}+4x-12}
slope of-5x-2y=-5
slope\:-5x-2y=-5
domain of 17-t^2
domain\:17-t^{2}
inverse of (2+x)/(3x-1)
inverse\:\frac{2+x}{3x-1}
critical f(x)=-4x^2+6x-7
critical\:f(x)=-4x^{2}+6x-7
range of (3x^2+6)/(x^2-2x-3)
range\:\frac{3x^{2}+6}{x^{2}-2x-3}
range of f(x)=y-6=(x+2)^2
range\:f(x)=y-6=(x+2)^{2}
simplify (0.3)(3)
simplify\:(0.3)(3)
asymptotes of f(x)=(7x)/(sqrt(9x-8))
asymptotes\:f(x)=\frac{7x}{\sqrt{9x-8}}
extreme f(x)=2x^3-3x^2-36x
extreme\:f(x)=2x^{3}-3x^{2}-36x
simplify (1.3)(5.1)
simplify\:(1.3)(5.1)
extreme f(x)=x^3-6x^2+15
extreme\:f(x)=x^{3}-6x^{2}+15
asymptotes of f(x)=3sin(4x)
asymptotes\:f(x)=3\sin(4x)
inverse of h(x)= 2/((2x+1))
inverse\:h(x)=\frac{2}{(2x+1)}
asymptotes of f(x)=2x+1
asymptotes\:f(x)=2x+1
simplify (3)(3.3)
simplify\:(3)(3.3)
asymptotes of f(x)=(4x^2+1)/(2x^2+5x-3)
asymptotes\:f(x)=\frac{4x^{2}+1}{2x^{2}+5x-3}
extreme f(x)= 1/3 x^3-x^2-3x
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}-3x
inverse of f(x)=\sqrt[3]{-5x+10}
inverse\:f(x)=\sqrt[3]{-5x+10}
slope ofintercept 4x-4y=36
slopeintercept\:4x-4y=36
domain of f(x)=t^2
domain\:f(x)=t^{2}
asymptotes of tan(3x)
asymptotes\:\tan(3x)
simplify (-2.8)(5)
simplify\:(-2.8)(5)
intercepts of f(x)=(x^2+x)/(-2x^2-2x+12)
intercepts\:f(x)=\frac{x^{2}+x}{-2x^{2}-2x+12}
inverse of y=log_{3}(x+2)
inverse\:y=\log_{3}(x+2)
domain of (sqrt(x+4))/((x+2)(x-5))
domain\:\frac{\sqrt{x+4}}{(x+2)(x-5)}
1
..
427
428
429
430
431
..
1324