Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 7e^xsqrt(2+e^x)
\int\:7e^{x}\sqrt{2+e^{x}}dx
derivative of-1/4 sin(x/2)
\frac{d}{dx}(-\frac{1}{4}\sin(\frac{x}{2}))
y=2xy^'
y=2xy^{\prime\:}
expand (x+1)(x^3+x-2)
expand\:(x+1)(x^{3}+x-2)
y^'-(6y)/x =(y/(x^2))^4
y^{\prime\:}-\frac{6y}{x}=(\frac{y}{x^{2}})^{4}
integral of ((sqrt(x)+3)^4)/(sqrt(x))
\int\:\frac{(\sqrt{x}+3)^{4}}{\sqrt{x}}dx
derivative of (x+1(x+1-1/(x+2)))
\frac{d}{dx}((x+1)(x+1-\frac{1}{x+2}))
integral of 1/(sqrt(5-8x-x^2))
\int\:\frac{1}{\sqrt{5-8x-x^{2}}}dx
integral of (e^{3x}+e^{-3x})^2
\int\:(e^{3x}+e^{-3x})^{2}dx
derivative of ln(sqrt(4-3x^3))
\frac{d}{dx}(\ln(\sqrt{4-3x^{3}}))
derivative of (-2x)/((x^2+1)^2)
derivative\:\frac{-2x}{(x^{2}+1)^{2}}
t*y^'+2*y=t^2-t+1
t\cdot\:y^{\prime\:}+2\cdot\:y=t^{2}-t+1
derivative of f(x)=e^{-3x}sin(4x^2)
derivative\:f(x)=e^{-3x}\sin(4x^{2})
integral of e^{9-4x}
\int\:e^{9-4x}dx
integral of (cos(x))/(3+2sin(x))
\int\:\frac{\cos(x)}{3+2\sin(x)}dx
derivative of y=6x(x^2+2)2
derivative\:y=6x(x^{2}+2)2
integral of ((3x+11))/(x^2-x-6)
\int\:\frac{(3x+11)}{x^{2}-x-6}dx
derivative of sqrt(x+11)
derivative\:\sqrt{x+11}
tangent of f(x)=(4x)/(x+2),\at x=2
tangent\:f(x)=\frac{4x}{x+2},\at\:x=2
(\partial)/(\partial x)((y^2)/(x^2+y^2))
\frac{\partial\:}{\partial\:x}(\frac{y^{2}}{x^{2}+y^{2}})
area x^3-11x^2+18x,-x^3+11x^2-18x
area\:x^{3}-11x^{2}+18x,-x^{3}+11x^{2}-18x
integral of (-ln(x))/2
\int\:\frac{-\ln(x)}{2}dx
f(x)=x^2sqrt(1-x^2)
f(x)=x^{2}\sqrt{1-x^{2}}
derivative of f(x)=x^3-3x+5
derivative\:f(x)=x^{3}-3x+5
derivative of f(x)=(cos(x)+4)/(1-sin(x))
derivative\:f(x)=\frac{\cos(x)+4}{1-\sin(x)}
integral of 1/(C^2)
\int\:\frac{1}{C^{2}}dC
tangent of f(x)=2\sqrt[3]{x},\at x=8
tangent\:f(x)=2\sqrt[3]{x},\at\:x=8
(dx)/(dt)=((e^t-e^{-t}))/(3+x)
\frac{dx}{dt}=\frac{(e^{t}-e^{-t})}{3+x}
y^'+1/x y=10x^2
y^{\prime\:}+\frac{1}{x}y=10x^{2}
derivative of sqrt(1-sin(x))
\frac{d}{dx}(\sqrt{1-\sin(x)})
derivative of 6x-5
\frac{d}{dx}(6x-5)
derivative of (e^{2x}+e^{-2x}/x)
\frac{d}{dx}(\frac{e^{2x}+e^{-2x}}{x})
derivative of Xsqrt(X+1)
derivative\:X\sqrt{X+1}
integral of (t-3)/(sqrt(t))
\int\:\frac{t-3}{\sqrt{t}}dt
(\partial)/(\partial x)(ysqrt(x)-y^2-x+3y)
\frac{\partial\:}{\partial\:x}(y\sqrt{x}-y^{2}-x+3y)
derivative of (9sqrt(x+8))x^2
derivative\:(9\sqrt{x+8})x^{2}
integral from 0 to infinity of (ye^{(-y)/a})/(a)
\int\:_{0}^{\infty\:}\frac{ye^{\frac{-y}{a}}}{a}dy
y^{''}-2y^'+y=2e^x
y^{\prime\:\prime\:}-2y^{\prime\:}+y=2e^{x}
tangent of f(x)=sin(sin(x)),\at x=2pi
tangent\:f(x)=\sin(\sin(x)),\at\:x=2π
limit as x approaches-1+of arcsin(x)
\lim\:_{x\to\:-1+}(\arcsin(x))
derivative of f(x)=ln((x+3)/(x-3))
derivative\:f(x)=\ln(\frac{x+3}{x-3})
derivative of (4x+5^2)
\frac{d}{dx}((4x+5)^{2})
f(x)=sin(x^3)
f(x)=\sin(x^{3})
slope of (-4,2),(0,4)
slope\:(-4,2),(0,4)
(d^3)/(dx^3)(sqrt(2t+3))
\frac{d^{3}}{dx^{3}}(\sqrt{2t+3})
integral of 1/(sqrt(5-7x-3x^2))
\int\:\frac{1}{\sqrt{5-7x-3x^{2}}}dx
derivative of f(x)=8arcsin(x^3)
derivative\:f(x)=8\arcsin(x^{3})
derivative of f(x)=2x^3-5x^4
derivative\:f(x)=2x^{3}-5x^{4}
integral of y/(e^y)
\int\:\frac{y}{e^{y}}dy
integral from 0 to 1 of pi(e^x)^2
\int\:_{0}^{1}π(e^{x})^{2}dx
area x^2,x^2-4x+4,0,1
area\:x^{2},x^{2}-4x+4,0,1
integral of e^{-r^2}
\int\:e^{-r^{2}}dr
derivative of x^2(x-2(x+4))
\frac{d}{dx}(x^{2}(x-2)(x+4))
integral of e^{-r}
\int\:e^{-r}dr
limit as x approaches 0 of (e^{2x-1})/x
\lim\:_{x\to\:0}(\frac{e^{2x-1}}{x})
integral of 4sqrt(4-x^2)
\int\:4\sqrt{4-x^{2}}dx
integral of (x^2-2)sqrt(x^3-6x+3)
\int\:(x^{2}-2)\sqrt{x^{3}-6x+3}dx
integral of 1/(-v^2)
\int\:\frac{1}{-v^{2}}dv
derivative of log_{2}(x^2+1-2^3)
\frac{d}{dx}(\log_{2}(x^{2}+1)-2^{3})
integral of 3xe^{7x^2}
\int\:3xe^{7x^{2}}dx
limit as x approaches 2-of ln(x-2)
\lim\:_{x\to\:2-}(\ln(x-2))
limit as x approaches 0 of (1+x)^{-1/x}
\lim\:_{x\to\:0}((1+x)^{-\frac{1}{x}})
f(x)=16cos(2x)
f(x)=16\cos(2x)
integral of csc^2(x)
\int\:\csc^{2}(x)dx
area 2x^2+1,-1,6
area\:2x^{2}+1,-1,6
limit as x approaches 0 of 3-sqrt(9+x)
\lim\:_{x\to\:0}(3-\sqrt{9+x})
integral from 0 to 1 of 4x
\int\:_{0}^{1}4xdx
f(x)=tan((pix)/2)
f(x)=\tan(\frac{πx}{2})
derivative of y=(3x-2x^2)3
\frac{d}{dx}y=(3x-2x^{2})3
integral of (9x^2)/((25+x^2)^2)
\int\:\frac{9x^{2}}{(25+x^{2})^{2}}dx
integral from 0 to 6 of x
\int\:_{0}^{6}xdx
integral of 3xe^x
\int\:3xe^{x}dx
limit as x approaches 0 of (3x^2-4x)/x
\lim\:_{x\to\:0}(\frac{3x^{2}-4x}{x})
integral of ln(2x+7)
\int\:\ln(2x+7)dx
derivative of (sin(x)^{tan(x)})
\frac{d}{dx}((\sin(x))^{\tan(x)})
integral from 0 to e of 2piy(1-ln(y))
\int\:_{0}^{e}2πy(1-\ln(y))dy
tangent of 8/(sqrt(x+11)),\at x=5
tangent\:\frac{8}{\sqrt{x+11}},\at\:x=5
sum from n=0 to infinity of (3/7)^{n/2}
\sum\:_{n=0}^{\infty\:}(\frac{3}{7})^{\frac{n}{2}}
integral from-1 to 1 of 1/2 x^3-2x+2
\int\:_{-1}^{1}\frac{1}{2}x^{3}-2x+2dx
integral of 1/(x^3)sin(1/x)
\int\:\frac{1}{x^{3}}\sin(\frac{1}{x})dx
parity \sqrt[4]{1+2x+x^3}
parity\:\sqrt[4]{1+2x+x^{3}}
y^{''}-2y^'-3y=24te^{2t},y(0)=5,y^'(0)=0
y^{\prime\:\prime\:}-2y^{\prime\:}-3y=24te^{2t},y(0)=5,y^{\prime\:}(0)=0
derivative of x(4)
\frac{d}{dx}(x(4))
tangent of y=(4x)/(x+1),(3,3)
tangent\:y=\frac{4x}{x+1},(3,3)
tangent of 6x^2+4x-3
tangent\:6x^{2}+4x-3
integral of (x^{n+1})/(n+1)
\int\:\frac{x^{n+1}}{n+1}dx
derivative of ln^x(x)
\frac{d}{dx}(\ln^{x}(x))
d/(dt)(1/(e^t))
\frac{d}{dt}(\frac{1}{e^{t}})
derivative of f(x)=(1+sqrt(3x))/(1-sqrt(3x))
derivative\:f(x)=\frac{1+\sqrt{3x}}{1-\sqrt{3x}}
integral from 0 to 1 of [x-x^k]
\int\:_{0}^{1}[x-x^{k}]dx
(dy)/(dx)-y/2 = 5/2
\frac{dy}{dx}-\frac{y}{2}=\frac{5}{2}
taylor x/(1-x),0
taylor\:\frac{x}{1-x},0
limit as h approaches 0 of h+2
\lim\:_{h\to\:0}(h+2)
integral of e^{-x/2}cos(3x)
\int\:e^{-\frac{x}{2}}\cos(3x)dx
derivative of F(x)=\sqrt[3]{3+tan(x)}
derivative\:F(x)=\sqrt[3]{3+\tan(x)}
integral of (x^3)/(sqrt(x^2-9))
\int\:\frac{x^{3}}{\sqrt{x^{2}-9}}dx
(\partial)/(\partial y)(6+xln(xy-7))
\frac{\partial\:}{\partial\:y}(6+x\ln(xy-7))
(\partial)/(\partial x)(xy(1-x-y))
\frac{\partial\:}{\partial\:x}(xy(1-x-y))
derivative of 2/(sin(x))
\frac{d}{dx}(\frac{2}{\sin(x)})
taylor sin(2x),0
taylor\:\sin(2x),0
1
..
260
261
262
263
264
..
2459