Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of f(x)=(sqrt(6x^2+7))/(8x+6)
asymptotes\:f(x)=\frac{\sqrt{6x^{2}+7}}{8x+6}
inverse of y=(x^2+6x-7)/(x^2+25)
inverse\:y=\frac{x^{2}+6x-7}{x^{2}+25}
extreme f(x)=x^4-200x^2+10000
extreme\:f(x)=x^{4}-200x^{2}+10000
intercepts of y=x+6
intercepts\:y=x+6
critical f(x)=2x^3-3x^2-12x+1
critical\:f(x)=2x^{3}-3x^{2}-12x+1
inverse of f(x)=((x-5))/3
inverse\:f(x)=\frac{(x-5)}{3}
domain of y= 1/(x-8)
domain\:y=\frac{1}{x-8}
asymptotes of f(x)= 1/(x^2-2)
asymptotes\:f(x)=\frac{1}{x^{2}-2}
extreme-x^3+3x^2+10x
extreme\:-x^{3}+3x^{2}+10x
domain of log_{3}(x-2)
domain\:\log_{3}(x-2)
domain of (sqrt(x-2))/(sqrt(x+4))
domain\:\frac{\sqrt{x-2}}{\sqrt{x+4}}
extreme f(x)=x^2-x-4
extreme\:f(x)=x^{2}-x-4
line 580-4t
line\:580-4t
extreme f(x)=3x^2-1
extreme\:f(x)=3x^{2}-1
intercepts of f(x)=ln(x-1)-1
intercepts\:f(x)=\ln(x-1)-1
domain of f(x)=log_{0.5}(x)
domain\:f(x)=\log_{0.5}(x)
range of sqrt(-x)
range\:\sqrt{-x}
slope of f(-2)=1andf(5)=-10
slope\:f(-2)=1andf(5)=-10
domain of f(x)=sqrt(9-y^2)
domain\:f(x)=\sqrt{9-y^{2}}
range of x^2-8x+15
range\:x^{2}-8x+15
parallel y-4x=-1
parallel\:y-4x=-1
asymptotes of f(x)= 4/(x-1)-2
asymptotes\:f(x)=\frac{4}{x-1}-2
inverse of f(127)=x^3+2
inverse\:f(127)=x^{3}+2
range of f(x)=arcsin(x)
range\:f(x)=\arcsin(x)
intercepts of f(x)=-1/3 (x-1)^2+1
intercepts\:f(x)=-\frac{1}{3}(x-1)^{2}+1
slope of 3x-4y=12
slope\:3x-4y=12
extreme (x^2)/(x^2-9)
extreme\:\frac{x^{2}}{x^{2}-9}
domain of sqrt(x-1)*5x+3
domain\:\sqrt{x-1}\cdot\:5x+3
slope of 2x+y=9
slope\:2x+y=9
inverse of f(x)=(x-8)/(1+7x)
inverse\:f(x)=\frac{x-8}{1+7x}
range of 1/(1+s^3)
range\:\frac{1}{1+s^{3}}
domain of sqrt(16-x^2)-sqrt(x+1)
domain\:\sqrt{16-x^{2}}-\sqrt{x+1}
domain of f(x)=sqrt(5-x)-sqrt(x^2-4)
domain\:f(x)=\sqrt{5-x}-\sqrt{x^{2}-4}
critical 3x^3-9x+1
critical\:3x^{3}-9x+1
amplitude of 3cos(4x)
amplitude\:3\cos(4x)
extreme f(x)=x^4-18x^2
extreme\:f(x)=x^{4}-18x^{2}
domain of f(x)=x^3-3x^2-13x+15
domain\:f(x)=x^{3}-3x^{2}-13x+15
critical f(x)=x^{5/2}-8x^2
critical\:f(x)=x^{\frac{5}{2}}-8x^{2}
distance (1,13),(27,21)
distance\:(1,13),(27,21)
f(x)=ln(x^2+1)
f(x)=\ln(x^{2}+1)
simplify (3.2)(5.4)
simplify\:(3.2)(5.4)
domain of f(x)=3x^3-6x^2
domain\:f(x)=3x^{3}-6x^{2}
domain of-5/(2t^{(3/2))}
domain\:-\frac{5}{2t^{(\frac{3}{2})}}
extreme f(x)=3xsqrt(2x^2+2)
extreme\:f(x)=3x\sqrt{2x^{2}+2}
symmetry x^2+3x
symmetry\:x^{2}+3x
inverse of 5x^2-10
inverse\:5x^{2}-10
inverse of f(x)=(2x+1)/(x+5)
inverse\:f(x)=\frac{2x+1}{x+5}
domain of f(x)=sqrt(6+5x)
domain\:f(x)=\sqrt{6+5x}
parity f(x)=x+sin(x-355/113)
parity\:f(x)=x+\sin(x-\frac{355}{113})
intercepts of f(x)=-2x(4x+5)(5x+5)
intercepts\:f(x)=-2x(4x+5)(5x+5)
inflection f(x)=x^4-50x^2+5
inflection\:f(x)=x^{4}-50x^{2}+5
critical y=x^{2/5}(x+3)
critical\:y=x^{\frac{2}{5}}(x+3)
range of f(x)=ln(x^2)
range\:f(x)=\ln(x^{2})
domain of f(x)=x^2+12
domain\:f(x)=x^{2}+12
inverse of-3/2 x+3/2
inverse\:-\frac{3}{2}x+\frac{3}{2}
domain of f(x)=4x-8
domain\:f(x)=4x-8
inverse of f(x)=7x-2
inverse\:f(x)=7x-2
domain of f(x)=e^{x-3}
domain\:f(x)=e^{x-3}
inflection f(x)=(x-1)^2(x-2)
inflection\:f(x)=(x-1)^{2}(x-2)
inflection x^4-32x^2+4
inflection\:x^{4}-32x^{2}+4
intercepts of (x^2-16)/(2x+8)
intercepts\:\frac{x^{2}-16}{2x+8}
midpoint (-1/2 , 7/2),(-2,2)
midpoint\:(-\frac{1}{2},\frac{7}{2}),(-2,2)
critical f(x)=x^3-6x^2+9x+1
critical\:f(x)=x^{3}-6x^{2}+9x+1
distance (1/2 , 1/2),(-2,3)
distance\:(\frac{1}{2},\frac{1}{2}),(-2,3)
domain of 6x^2+1
domain\:6x^{2}+1
asymptotes of f(x)= 2/(x-1)+4
asymptotes\:f(x)=\frac{2}{x-1}+4
slope of-2
slope\:-2
inflection 8x-4ln(x)
inflection\:8x-4\ln(x)
line (0,0),(1,1)
line\:(0,0),(1,1)
midpoint (-2,-2),(2,8)
midpoint\:(-2,-2),(2,8)
domain of f(x)=-sqrt(x)+7
domain\:f(x)=-\sqrt{x}+7
extreme y=x^2-6x+8
extreme\:y=x^{2}-6x+8
parallel y=5x
parallel\:y=5x
domain of f(x)=x^2+2
domain\:f(x)=x^{2}+2
asymptotes of f(x)=(x^2+5x+6)/(-4x^2+36)
asymptotes\:f(x)=\frac{x^{2}+5x+6}{-4x^{2}+36}
lcm-7,-7
lcm\:-7,-7
parity ((x+1)^n)/(x^n*n)
parity\:\frac{(x+1)^{n}}{x^{n}\cdot\:n}
global (1060-x)^2+x^2
global\:(1060-x)^{2}+x^{2}
slope ofintercept x-4y=-4
slopeintercept\:x-4y=-4
range of f(x)=-2^x+1
range\:f(x)=-2^{x}+1
inverse of f(x)=50x
inverse\:f(x)=50x
inverse of 1+(2+x)^{1/2}
inverse\:1+(2+x)^{\frac{1}{2}}
domain of f(x)=(x^2)/(2x-7)
domain\:f(x)=\frac{x^{2}}{2x-7}
asymptotes of f(x)=((x+2))/((x-2))
asymptotes\:f(x)=\frac{(x+2)}{(x-2)}
intercepts of-x^2+8x-7
intercepts\:-x^{2}+8x-7
inverse of f(x)=log_{3}(x^2)
inverse\:f(x)=\log_{3}(x^{2})
parity (sqrt(1+sin(y)))/(1-sin(y))
parity\:\frac{\sqrt{1+\sin(y)}}{1-\sin(y)}
inverse of 1/3 x-1
inverse\:\frac{1}{3}x-1
range of \sqrt[3]{x+1}+3
range\:\sqrt[3]{x+1}+3
symmetry y=x^2-3x+3
symmetry\:y=x^{2}-3x+3
slope of y=-5x+2
slope\:y=-5x+2
slope ofintercept y-6=3(x-1)
slopeintercept\:y-6=3(x-1)
domain of y= 5/((1-2x)^2)
domain\:y=\frac{5}{(1-2x)^{2}}
domain of f(x)=sqrt(-3x)
domain\:f(x)=\sqrt{-3x}
extreme (16x)/(x^2+4)
extreme\:\frac{16x}{x^{2}+4}
domain of f(x)=\sqrt[5]{1-x}
domain\:f(x)=\sqrt[5]{1-x}
f(x)=x^2-4x-5
f(x)=x^{2}-4x-5
domain of y= x/(x+1)
domain\:y=\frac{x}{x+1}
midpoint (-1,2),(1,-2)
midpoint\:(-1,2),(1,-2)
critical f(x)=(x^2)/(x-2)
critical\:f(x)=\frac{x^{2}}{x-2}
1
..
120
121
122
123
124
..
1324