Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
critical (x^2-x-2)/(x^2-6x+9)
critical\:\frac{x^{2}-x-2}{x^{2}-6x+9}
midpoint (-3,4),(-6,-1)
midpoint\:(-3,4),(-6,-1)
parallel \at (-7-5),y=5
parallel\:\at\:(-7-5),y=5
intercepts of f(x)=x^2+4x+6
intercepts\:f(x)=x^{2}+4x+6
inverse of 5x^2-5
inverse\:5x^{2}-5
domain of 2x^2+4x-1
domain\:2x^{2}+4x-1
inflection f(x)=3x^4-4x^3
inflection\:f(x)=3x^{4}-4x^{3}
inverse of f(x)=(14)/(x+3)
inverse\:f(x)=\frac{14}{x+3}
domain of f(x)=(x+2)/(x+1)
domain\:f(x)=\frac{x+2}{x+1}
intercepts of x^3-9x^2+4x-36
intercepts\:x^{3}-9x^{2}+4x-36
range of sqrt(2x)
range\:\sqrt{2x}
amplitude of 4tan(x)
amplitude\:4\tan(x)
asymptotes of x^3
asymptotes\:x^{3}
inverse of f(x)=-sqrt(36-(1.2x+5)^2)+3
inverse\:f(x)=-\sqrt{36-(1.2x+5)^{2}}+3
inverse of f(x)=7x^3+5
inverse\:f(x)=7x^{3}+5
critical cos(x)+sin(x)
critical\:\cos(x)+\sin(x)
monotone (2x^3)/(x^3-1)
monotone\:\frac{2x^{3}}{x^{3}-1}
inverse of f(x)=x^2-2x+6
inverse\:f(x)=x^{2}-2x+6
line (5,-8),(2,7)
line\:(5,-8),(2,7)
domain of f(x)=ln(e^x-2)
domain\:f(x)=\ln(e^{x}-2)
inverse of y=-2/3 x-5
inverse\:y=-\frac{2}{3}x-5
inverse of f(x)=2x+10
inverse\:f(x)=2x+10
domain of f(x)=(3sqrt(x+5))/(x+8)
domain\:f(x)=\frac{3\sqrt{x+5}}{x+8}
intercepts of-10.4
intercepts\:-10.4
inverse of f(x)=3x-2
inverse\:f(x)=3x-2
critical x/(1-x)
critical\:\frac{x}{1-x}
inverse of cos(x)-3
inverse\:\cos(x)-3
line (4,1),(6,0)
line\:(4,1),(6,0)
inverse of f(x)=-sqrt(x+3)
inverse\:f(x)=-\sqrt{x+3}
domain of sqrt(6x+54)
domain\:\sqrt{6x+54}
domain of f(x)=(4x)/((x+5)^2)
domain\:f(x)=\frac{4x}{(x+5)^{2}}
y=2x
y=2x
slope of (12x}{13}-\frac{5y)/7 =(6y)/7+5
slope\:\frac{12x}{13}-\frac{5y}{7}=\frac{6y}{7}+5
slope of (3.5)5x-6y=4
slope\:(3.5)5x-6y=4
shift 6tan(8x+40)
shift\:6\tan(8x+40)
line (-5,-4),(1,4)
line\:(-5,-4),(1,4)
extreme f(x)=2x^3-3x^2-432x
extreme\:f(x)=2x^{3}-3x^{2}-432x
range of (x^2)/(x^2-1)
range\:\frac{x^{2}}{x^{2}-1}
symmetry y=-6x^3+2x
symmetry\:y=-6x^{3}+2x
parity f(x)=x^2|x|+3
parity\:f(x)=x^{2}\left|x\right|+3
intercepts of f(x)=2x^2+8x
intercepts\:f(x)=2x^{2}+8x
range of 4/(x-3)
range\:\frac{4}{x-3}
inverse of f(x)=((4x))/((9x-1))
inverse\:f(x)=\frac{(4x)}{(9x-1)}
slope of y= 1/6 x+3/2
slope\:y=\frac{1}{6}x+\frac{3}{2}
inverse of f(x)=2x+5/2
inverse\:f(x)=2x+\frac{5}{2}
critical f(x)=sqrt(x^2+10)
critical\:f(x)=\sqrt{x^{2}+10}
domain of f(x)=6sqrt(x-7)
domain\:f(x)=6\sqrt{x-7}
inverse of y=x^2-2x
inverse\:y=x^{2}-2x
range of f(x)=(2x)/(x+5)
range\:f(x)=\frac{2x}{x+5}
asymptotes of f(x)=(5x+25)/(2x+10)
asymptotes\:f(x)=\frac{5x+25}{2x+10}
asymptotes of f(x)= 1/(x-4)+2
asymptotes\:f(x)=\frac{1}{x-4}+2
inverse of f(x)=3x^3+15
inverse\:f(x)=3x^{3}+15
domain of 3x+4
domain\:3x+4
domain of f(1/2)=32x^2+16x+13
domain\:f(\frac{1}{2})=32x^{2}+16x+13
asymptotes of (x^4)/(x^2-2)
asymptotes\:\frac{x^{4}}{x^{2}-2}
range of 7/(x+2)
range\:\frac{7}{x+2}
domain of f(x)=(2x)/3
domain\:f(x)=\frac{2x}{3}
slope ofintercept-9x+y=1
slopeintercept\:-9x+y=1
midpoint (1,-6),(2,1)
midpoint\:(1,-6),(2,1)
asymptotes of (x^3)/((x-1)^2)
asymptotes\:\frac{x^{3}}{(x-1)^{2}}
asymptotes of f(x)=3^x+2
asymptotes\:f(x)=3^{x}+2
intercepts of 40(1/4)^x
intercepts\:40(\frac{1}{4})^{x}
slope ofintercept x-2y=6
slopeintercept\:x-2y=6
domain of f(x)=-|x|-3
domain\:f(x)=-\left|x\right|-3
range of f(x)=(sqrt(x-4))/(x-8)
range\:f(x)=\frac{\sqrt{x-4}}{x-8}
periodicity of-(cos((11pix)/6))/(2)-2
periodicity\:-\frac{\cos(\frac{11πx}{6})}{2}-2
asymptotes of f(x)=(x-6)/(x^2-36)
asymptotes\:f(x)=\frac{x-6}{x^{2}-36}
inverse of f(x)=5x+13
inverse\:f(x)=5x+13
domain of (2x^2+2x-4)/(x^2+x)
domain\:\frac{2x^{2}+2x-4}{x^{2}+x}
domain of f(x)=(sqrt(x+6))/(6+x)
domain\:f(x)=\frac{\sqrt{x+6}}{6+x}
intercepts of y=x+4
intercepts\:y=x+4
asymptotes of f(x)=((x+5))/(x^2-3x)
asymptotes\:f(x)=\frac{(x+5)}{x^{2}-3x}
range of (x-2)^3
range\:(x-2)^{3}
asymptotes of f(x)=3+log_{2}(x)
asymptotes\:f(x)=3+\log_{2}(x)
asymptotes of f(x)=(4x^2+x-1)/(x^2+x-20)
asymptotes\:f(x)=\frac{4x^{2}+x-1}{x^{2}+x-20}
inverse of f(x)=-x-2
inverse\:f(x)=-x-2
domain of y= 1/x
domain\:y=\frac{1}{x}
slope of-1/4
slope\:-\frac{1}{4}
slope ofintercept-3y=4x+11
slopeintercept\:-3y=4x+11
inverse of f(x)=-5/2
inverse\:f(x)=-\frac{5}{2}
inverse of f(x)=-x^2+6x-10
inverse\:f(x)=-x^{2}+6x-10
range of f(x)=(x+4)/(x^2-9)
range\:f(x)=\frac{x+4}{x^{2}-9}
domain of f(x)=2sqrt(x^2)
domain\:f(x)=2\sqrt{x^{2}}
critical f(x)=xln(5x)
critical\:f(x)=x\ln(5x)
extreme f(x)=3x^4+12x^3
extreme\:f(x)=3x^{4}+12x^{3}
asymptotes of (5e^x)/(e^x-9)
asymptotes\:\frac{5e^{x}}{e^{x}-9}
domain of f(x)=((x-2))/((x+3))
domain\:f(x)=\frac{(x-2)}{(x+3)}
shift-1/7 sin(5x+pi/2)
shift\:-\frac{1}{7}\sin(5x+\frac{π}{2})
inflection f(x)=(-7)/(-2x-4)
inflection\:f(x)=\frac{-7}{-2x-4}
inverse of f(x)=(2x+1)/(1-3x)
inverse\:f(x)=\frac{2x+1}{1-3x}
inverse of f(x)=x^2-5,x>= 0
inverse\:f(x)=x^{2}-5,x\ge\:0
intercepts of f(x)=(x^2+x-2)/(2x^2-2)
intercepts\:f(x)=\frac{x^{2}+x-2}{2x^{2}-2}
slope of 5p+2q=4
slope\:5p+2q=4
domain of (x-6)/(x^2-36)
domain\:\frac{x-6}{x^{2}-36}
midpoint (48,100),(42,125)
midpoint\:(48,100),(42,125)
domain of (x-5)/(x^2+25)-3x
domain\:\frac{x-5}{x^{2}+25}-3x
domain of f(x)=-3x^2+5
domain\:f(x)=-3x^{2}+5
extreme f(x)=x^2-2x+7
extreme\:f(x)=x^{2}-2x+7
domain of f(x)=-1/(sqrt(x))
domain\:f(x)=-\frac{1}{\sqrt{x}}
domain of (x^2-4)/(3x-6)
domain\:\frac{x^{2}-4}{3x-6}
1
..
341
342
343
344
345
..
1324