Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=4x^2+9
inverse\:f(x)=4x^{2}+9
parity 1/(x+5)
parity\:\frac{1}{x+5}
inverse of f(x)=2x+2/3
inverse\:f(x)=2x+\frac{2}{3}
inverse of f(x)= 1/(x+2)
inverse\:f(x)=\frac{1}{x+2}
domain of x/(x-2)
domain\:\frac{x}{x-2}
parallel 3x+2y=-14
parallel\:3x+2y=-14
range of 3x^5-5x^3+5
range\:3x^{5}-5x^{3}+5
range of 3x-2
range\:3x-2
intercepts of F(x)=-2x-1
intercepts\:F(x)=-2x-1
parallel 2y-8=-3(5-x),(-2,-11)
parallel\:2y-8=-3(5-x),(-2,-11)
f(x)=sqrt(1-x)
f(x)=\sqrt{1-x}
monotone f(x)=-\sqrt[3]{x+4}-2
monotone\:f(x)=-\sqrt[3]{x+4}-2
domain of log_{6}(x)
domain\:\log_{6}(x)
monotone f(x)=x^3-9x^2
monotone\:f(x)=x^{3}-9x^{2}
slope ofintercept 2x-y=6
slopeintercept\:2x-y=6
domain of sqrt(16-x^2)-sqrt(x+2)
domain\:\sqrt{16-x^{2}}-\sqrt{x+2}
inverse of y=3x-4
inverse\:y=3x-4
slope of x+2y=14
slope\:x+2y=14
asymptotes of f(x)=(5x)/(x^2+16)
asymptotes\:f(x)=\frac{5x}{x^{2}+16}
simplify (-2.2)(5.3)
simplify\:(-2.2)(5.3)
inverse of f(x)=0.0053x^{1.0617}
inverse\:f(x)=0.0053x^{1.0617}
range of g(x)=6x+4
range\:g(x)=6x+4
domain of f(x)=x^{10}
domain\:f(x)=x^{10}
range of y= 4/(7sqrt(x))
range\:y=\frac{4}{7\sqrt{x}}
perpendicular \at (-7-5),y=5
perpendicular\:\at\:(-7-5),y=5
f(x)=cos(3x)
f(x)=\cos(3x)
intercepts of (2x^2-5x-25)/(2x^2-5x+2)
intercepts\:\frac{2x^{2}-5x-25}{2x^{2}-5x+2}
asymptotes of f(x)=(x^2-2x+5)/(3x-2)
asymptotes\:f(x)=\frac{x^{2}-2x+5}{3x-2}
domain of f(x)=(1-6t)/(5+t)
domain\:f(x)=\frac{1-6t}{5+t}
distance (2,8),(12,2)
distance\:(2,8),(12,2)
inverse of f(x)=(3x+8)/(x+3)
inverse\:f(x)=\frac{3x+8}{x+3}
parallel 5x+2y=-3
parallel\:5x+2y=-3
symmetry (x-5)/(x+2)
symmetry\:\frac{x-5}{x+2}
slope of y=-2x+1
slope\:y=-2x+1
inflection f(x)= 1/2 x^4-4x^3
inflection\:f(x)=\frac{1}{2}x^{4}-4x^{3}
inverse of f(x)=log_{3}(2x)
inverse\:f(x)=\log_{3}(2x)
monotone f(x)=2x^3+3x^2-180x
monotone\:f(x)=2x^{3}+3x^{2}-180x
asymptotes of 2^{x+2}+2
asymptotes\:2^{x+2}+2
inverse of f(x)=-2/3 x+3
inverse\:f(x)=-\frac{2}{3}x+3
inverse of f(x)=sqrt(x+8)-4
inverse\:f(x)=\sqrt{x+8}-4
domain of f(x)=x^2+3x+2
domain\:f(x)=x^{2}+3x+2
extreme f(x)=xe^{-4x}
extreme\:f(x)=xe^{-4x}
intercepts of f(x)=(5x+10)/(-2x^2-6x-4)
intercepts\:f(x)=\frac{5x+10}{-2x^{2}-6x-4}
range of f(x)=(ln(x))/x
range\:f(x)=\frac{\ln(x)}{x}
domain of 4x-2
domain\:4x-2
intercepts of f(x)=(2x^2)/(x^2+x-6)
intercepts\:f(x)=\frac{2x^{2}}{x^{2}+x-6}
range of y=sqrt(36-x^2)
range\:y=\sqrt{36-x^{2}}
parity f(x)= 1/(5x^3)
parity\:f(x)=\frac{1}{5x^{3}}
asymptotes of (x^2+x-2)/(x-1)
asymptotes\:\frac{x^{2}+x-2}{x-1}
inverse of f(x)= x/(7x+1)
inverse\:f(x)=\frac{x}{7x+1}
inverse of h(x)=4x
inverse\:h(x)=4x
parity (-x^2)/(x+1)
parity\:\frac{-x^{2}}{x+1}
asymptotes of arcsec(x)
asymptotes\:\arcsec(x)
extreme f(x)=x^3-3x^2+3x-7
extreme\:f(x)=x^{3}-3x^{2}+3x-7
inverse of ln(2x)
inverse\:\ln(2x)
inverse of f(x)=sqrt(x+2)-1
inverse\:f(x)=\sqrt{x+2}-1
slope of y=2x+6
slope\:y=2x+6
inverse of f(x)=sqrt(2x)+1
inverse\:f(x)=\sqrt{2x}+1
line m=1.5,(7,18.5)
line\:m=1.5,(7,18.5)
inverse of f(x)=(2e^x+3)/(e^x-4)
inverse\:f(x)=\frac{2e^{x}+3}{e^{x}-4}
inverse of f(x)=x^2-16x+63
inverse\:f(x)=x^{2}-16x+63
midpoint (3,-8),(5,-2.5)
midpoint\:(3,-8),(5,-2.5)
parity f(x)=3x^3-2
parity\:f(x)=3x^{3}-2
distance (-5,4),(2,6)
distance\:(-5,4),(2,6)
extreme f(x)=x^3-27x
extreme\:f(x)=x^{3}-27x
range of f(x)= 2/(sqrt(|x-2|-1))
range\:f(x)=\frac{2}{\sqrt{\left|x-2\right|-1}}
domain of f(x)=sqrt(3-x)+sqrt(x^2-1)
domain\:f(x)=\sqrt{3-x}+\sqrt{x^{2}-1}
domain of f(x)=sqrt(x-9)
domain\:f(x)=\sqrt{x-9}
critical f(x)=4xsqrt(2x^2+2)
critical\:f(x)=4x\sqrt{2x^{2}+2}
amplitude of cos(5x)
amplitude\:\cos(5x)
inverse of f(x)=(x^2-4)/(2x^2)
inverse\:f(x)=\frac{x^{2}-4}{2x^{2}}
inverse of 1/4 x+3
inverse\:\frac{1}{4}x+3
slope ofintercept y-3=5(x-2)
slopeintercept\:y-3=5(x-2)
inverse of f(x)=2x^3-9
inverse\:f(x)=2x^{3}-9
asymptotes of f(x)= 3/x-2
asymptotes\:f(x)=\frac{3}{x}-2
inverse of f(x)=(x+1)
inverse\:f(x)=(x+1)
perpendicular y=-5x
perpendicular\:y=-5x
extreme f(x)=(x+4)^{4/7}
extreme\:f(x)=(x+4)^{\frac{4}{7}}
domain of sqrt(1/(x+2))
domain\:\sqrt{\frac{1}{x+2}}
range of f(x)=-3|x|
range\:f(x)=-3\left|x\right|
inverse of y=x^2-5x+6
inverse\:y=x^{2}-5x+6
extreme f(x)=5x^3-3x^5
extreme\:f(x)=5x^{3}-3x^{5}
intercepts of f(x)=x^2+20x+100
intercepts\:f(x)=x^{2}+20x+100
critical f(x)=x^2-6x+8
critical\:f(x)=x^{2}-6x+8
symmetry x^2+8x+10
symmetry\:x^{2}+8x+10
extreme f(x)=250x-(pix^3)/2
extreme\:f(x)=250x-\frac{πx^{3}}{2}
intercepts of f(x)=x^6-2x^4-3x^2
intercepts\:f(x)=x^{6}-2x^{4}-3x^{2}
shift 3sin(x)
shift\:3\sin(x)
monotone f(x)=-2x^2+2x-4
monotone\:f(x)=-2x^{2}+2x-4
inverse of f(x)=((x-4)^7)/3
inverse\:f(x)=\frac{(x-4)^{7}}{3}
inflection (4x)/(x^2+4)
inflection\:\frac{4x}{x^{2}+4}
inverse of f(x)= 5/2-x
inverse\:f(x)=\frac{5}{2}-x
inverse of y=-(5^x)/2
inverse\:y=-\frac{5^{x}}{2}
inverse of f(x)=5+sqrt(4+x)
inverse\:f(x)=5+\sqrt{4+x}
inverse of f(x)=ln((x+4)/x)
inverse\:f(x)=\ln(\frac{x+4}{x})
domain of f(x)= 1/(9-x^2)
domain\:f(x)=\frac{1}{9-x^{2}}
critical sin(5x)
critical\:\sin(5x)
domain of f(x)=x^2+9
domain\:f(x)=x^{2}+9
slope of 7x-2y=14
slope\:7x-2y=14
domain of 1/(sqrt(1/x))
domain\:\frac{1}{\sqrt{\frac{1}{x}}}
1
..
356
357
358
359
360
..
1324