Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope of 3x+2y=24
slope\:3x+2y=24
asymptotes of f(x)=(16)/(x^2-2x-8)
asymptotes\:f(x)=\frac{16}{x^{2}-2x-8}
asymptotes of f(x)=(x^2-9)/x
asymptotes\:f(x)=\frac{x^{2}-9}{x}
asymptotes of f(x)=(x^2-2x-3)/(x-3)
asymptotes\:f(x)=\frac{x^{2}-2x-3}{x-3}
midpoint (-7,-1),(-7,9)
midpoint\:(-7,-1),(-7,9)
range of f(x)= 1/4 x-2
range\:f(x)=\frac{1}{4}x-2
range of f(x)={-x^2,x<0}
range\:f(x)=\left\{-x^{2},x<0\right\}
domain of sqrt(t^2+1)
domain\:\sqrt{t^{2}+1}
extreme-sqrt(x^2)+2x+17
extreme\:-\sqrt{x^{2}}+2x+17
inverse of y=11x
inverse\:y=11x
domain of g(x)=sqrt(x+4)
domain\:g(x)=\sqrt{x+4}
line (4,4),(-2,-2)
line\:(4,4),(-2,-2)
critical f(x)=sqrt(5x^2+x-4)
critical\:f(x)=\sqrt{5x^{2}+x-4}
inverse of f(x)=2x^2-7
inverse\:f(x)=2x^{2}-7
domain of (e^x+1)/(e^x-2)
domain\:\frac{e^{x}+1}{e^{x}-2}
domain of-1/(2sqrt(8-x))
domain\:-\frac{1}{2\sqrt{8-x}}
inverse of f(x)=64^{x-17}
inverse\:f(x)=64^{x-17}
domain of f(x)=sqrt(3x-4)
domain\:f(x)=\sqrt{3x-4}
domain of f(x)= 1/2*2^{(x+1)}+4
domain\:f(x)=\frac{1}{2}\cdot\:2^{(x+1)}+4
critical f(x)= x/(x^2+15x+50)
critical\:f(x)=\frac{x}{x^{2}+15x+50}
midpoint (8,-8),(-4,-2)
midpoint\:(8,-8),(-4,-2)
domain of x/(8x+49)
domain\:\frac{x}{8x+49}
domain of (3x^2)/(x^2-4)
domain\:\frac{3x^{2}}{x^{2}-4}
parity f(x)=2n
parity\:f(x)=2n
range of (3x^2-3)/(x^2+x-6)
range\:\frac{3x^{2}-3}{x^{2}+x-6}
domain of (12x+35)/(x(x+7))
domain\:\frac{12x+35}{x(x+7)}
extreme f(x)=x^3-15x^2+75x-1
extreme\:f(x)=x^{3}-15x^{2}+75x-1
domain of 1/4 x^2-2x+15
domain\:\frac{1}{4}x^{2}-2x+15
asymptotes of (x+4)/(x^2+25)
asymptotes\:\frac{x+4}{x^{2}+25}
critical 12x^5+15x^4-240x^3+1
critical\:12x^{5}+15x^{4}-240x^{3}+1
intercepts of f(x)=4x-5y=24
intercepts\:f(x)=4x-5y=24
domain of f(x)=8x^2-5x-2
domain\:f(x)=8x^{2}-5x-2
midpoint (4,-1),(-3,3)
midpoint\:(4,-1),(-3,3)
critical (7x^2+490x)/(x-5)
critical\:\frac{7x^{2}+490x}{x-5}
intercepts of y=2x-2
intercepts\:y=2x-2
asymptotes of f(x)=2^x+1
asymptotes\:f(x)=2^{x}+1
amplitude of y=2sin(1/3 x)
amplitude\:y=2\sin(\frac{1}{3}x)
asymptotes of f(x)=(6x+12)/(x^2+x-12)
asymptotes\:f(x)=\frac{6x+12}{x^{2}+x-12}
inverse of f(x)=-2(x-1)^2+3
inverse\:f(x)=-2(x-1)^{2}+3
slope of 3y=-9x+13
slope\:3y=-9x+13
domain of f(x)=8x^2+1
domain\:f(x)=8x^{2}+1
domain of x^2-6x+8
domain\:x^{2}-6x+8
domain of f(x)= x/(x-9)
domain\:f(x)=\frac{x}{x-9}
intercepts of f(x)=3x^2-2x-5
intercepts\:f(x)=3x^{2}-2x-5
symmetry y=-x^2+4x
symmetry\:y=-x^{2}+4x
inflection f(x)=2x^3+3x^2-12x
inflection\:f(x)=2x^{3}+3x^{2}-12x
parity f(x)=(x^3)/(x^4-x^2)
parity\:f(x)=\frac{x^{3}}{x^{4}-x^{2}}
distance (0,4),(2,3)
distance\:(0,4),(2,3)
slope ofintercept y=3x-6
slopeintercept\:y=3x-6
intercepts of x^3+x^2-9x-9
intercepts\:x^{3}+x^{2}-9x-9
asymptotes of f(x)= x/(x^2+3)
asymptotes\:f(x)=\frac{x}{x^{2}+3}
range of 4sqrt(x-1)+5
range\:4\sqrt{x-1}+5
domain of (e^x)/x
domain\:\frac{e^{x}}{x}
domain of (x+2)/((3x^2-4x-4))
domain\:\frac{x+2}{(3x^{2}-4x-4)}
range of y=-1/3 x^2+4x+11
range\:y=-\frac{1}{3}x^{2}+4x+11
inflection cot(x-pi)-2
inflection\:\cot(x-π)-2
f(x)= 1/2 x^3
f(x)=\frac{1}{2}x^{3}
inverse of f(x)=(-15+4x)/3
inverse\:f(x)=\frac{-15+4x}{3}
domain of f(x)=(sqrt(7+x))/(8-x)
domain\:f(x)=\frac{\sqrt{7+x}}{8-x}
intercepts of sqrt(X+3)
intercepts\:\sqrt{X+3}
domain of 5/(sqrt(x))
domain\:\frac{5}{\sqrt{x}}
domain of f(x)=sqrt(4x^2-4)
domain\:f(x)=\sqrt{4x^{2}-4}
inverse of 9e^{((w+4)^2)/(32)}
inverse\:9e^{\frac{(w+4)^{2}}{32}}
extreme f(x)=6x^4+8x^3
extreme\:f(x)=6x^{4}+8x^{3}
inverse of f(x)=x^5-3
inverse\:f(x)=x^{5}-3
domain of f(x)=x+4/x
domain\:f(x)=x+\frac{4}{x}
inverse of f(x)=3x^2-2
inverse\:f(x)=3x^{2}-2
shift tan(x-pi/2)
shift\:\tan(x-\frac{π}{2})
midpoint (-2,-4),(3,-2)
midpoint\:(-2,-4),(3,-2)
inverse of f(x)=x(x-2)
inverse\:f(x)=x(x-2)
inflection 1/(2sqrt(x))
inflection\:\frac{1}{2\sqrt{x}}
intercepts of f(x)=-2x^2+5
intercepts\:f(x)=-2x^{2}+5
range of f(x)=-x^2+6x-1
range\:f(x)=-x^{2}+6x-1
extreme f(x)=(x^2+x+2)/(x-1)
extreme\:f(x)=\frac{x^{2}+x+2}{x-1}
inverse of f(x)=-x^2-4x-3
inverse\:f(x)=-x^{2}-4x-3
domain of f(x)=(12x+48)/(7x-35)
domain\:f(x)=\frac{12x+48}{7x-35}
inverse of y= x/(x+2)
inverse\:y=\frac{x}{x+2}
distance (0,0),(2,-3)
distance\:(0,0),(2,-3)
inverse of log_{e}((2-x)/(x+3))
inverse\:\log_{e}(\frac{2-x}{x+3})
domain of f(x)=3-x
domain\:f(x)=3-x
inverse of f(x)=(12-x)^{1/4}
inverse\:f(x)=(12-x)^{\frac{1}{4}}
parity f(x)= x/(1-x^3)
parity\:f(x)=\frac{x}{1-x^{3}}
domain of f(x)=-sqrt(3-x)+2
domain\:f(x)=-\sqrt{3-x}+2
domain of 2x^2+5x-3
domain\:2x^{2}+5x-3
domain of f(x)=(sqrt(x+3))/(x-9)
domain\:f(x)=\frac{\sqrt{x+3}}{x-9}
y=4x-3
y=4x-3
domain of f(x)=8+5ln(2x+3)
domain\:f(x)=8+5\ln(2x+3)
inverse of f(x)=(5x-9)/(9x+5)
inverse\:f(x)=\frac{5x-9}{9x+5}
extreme f(x)=-(40x)/(x^2+25)
extreme\:f(x)=-\frac{40x}{x^{2}+25}
inverse of f(x)=2x^2-12x+1
inverse\:f(x)=2x^{2}-12x+1
domain of g(x)=sqrt(3-x)
domain\:g(x)=\sqrt{3-x}
intercepts of 2+24.5x-4.9x^2
intercepts\:2+24.5x-4.9x^{2}
monotone f(x)=(x^2)/(x-1)
monotone\:f(x)=\frac{x^{2}}{x-1}
critical x+4/x
critical\:x+\frac{4}{x}
asymptotes of f(x)=((x-1))/(x+1)
asymptotes\:f(x)=\frac{(x-1)}{x+1}
inverse of f(x)=(4x-2)/(x-1)
inverse\:f(x)=\frac{4x-2}{x-1}
asymptotes of f(x)=(2x^2+4x)/(x^2-2x-8)
asymptotes\:f(x)=\frac{2x^{2}+4x}{x^{2}-2x-8}
symmetry y=x^3+2x-1
symmetry\:y=x^{3}+2x-1
domain of f(x)=2x-8
domain\:f(x)=2x-8
inverse of f(x)=(sqrt(x^2+1))/x
inverse\:f(x)=\frac{\sqrt{x^{2}+1}}{x}
1
..
395
396
397
398
399
..
1324