Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (4x^2+2x+6/(sqrt(x)))
\frac{d}{dx}(\frac{4x^{2}+2x+6}{\sqrt{x}})
integral of ((ln(x))^{40})/x
\int\:\frac{(\ln(x))^{40}}{x}dx
derivative of (x/(1+sqrt(1-x^2))^n)
\frac{d}{dx}((\frac{x}{1+\sqrt{1-x^{2}}})^{n})
derivative of f(x)=(2x)/(1-x)
derivative\:f(x)=\frac{2x}{1-x}
integral from 4 to x of ((x-4)^2)/(72)
\int\:_{4}^{x}\frac{(x-4)^{2}}{72}dx
limit as x approaches 1 of x/(x-1)-1/x
\lim\:_{x\to\:1}(\frac{x}{x-1}-\frac{1}{x})
integral of (x+2)/(x^2+4)
\int\:\frac{x+2}{x^{2}+4}dx
(\partial)/(\partial x)(7x^{3y})
\frac{\partial\:}{\partial\:x}(7x^{3y})
integral of (x^7)/((1+x^4)^2)
\int\:\frac{x^{7}}{(1+x^{4})^{2}}dx
derivative of (((e^6))/((e^4)))^{-1}
derivative\:(\frac{(e^{6})}{(e^{4})})^{-1}
(\partial)/(\partial x)(x/(x^2+4))
\frac{\partial\:}{\partial\:x}(\frac{x}{x^{2}+4})
x(dv)/(dx)=(1-4v^2)/(3v)
x\frac{dv}{dx}=\frac{1-4v^{2}}{3v}
(x^2+y^2-7)dx=(y+xy)dy,y(0)=1
(x^{2}+y^{2}-7)dx=(y+xy)dy,y(0)=1
derivative of log_{3}((3x^2/(sqrt(x))))
\frac{d}{dx}(\log_{3}(\frac{3x^{2}}{\sqrt{x}}))
(dy)/(dx)=(xy+x+3y+3)/(xy+2x-y-2)
\frac{dy}{dx}=\frac{xy+x+3y+3}{xy+2x-y-2}
integral of cos(4u)
\int\:\cos(4u)du
tangent of x^2+xy+2y^2=28,(-5,3)
tangent\:x^{2}+xy+2y^{2}=28,(-5,3)
inverse oflaplace (100)/(s(s^2+25))
inverselaplace\:\frac{100}{s(s^{2}+25)}
limit as x approaches 2-of 2x-4
\lim\:_{x\to\:2-}(2x-4)
(dy)/(dx)+3x^2y=x^2
\frac{dy}{dx}+3x^{2}y=x^{2}
limit as x approaches 0 of (cos(x))/2
\lim\:_{x\to\:0}(\frac{\cos(x)}{2})
integral of s
\int\:sds
derivative of (x+1/x (5x^2-1/(x^2)))
\frac{d}{dx}((x+\frac{1}{x})(5x^{2}-\frac{1}{x^{2}}))
derivative of f(x)=-3\sqrt[3]{x}*sec(2x)
derivative\:f(x)=-3\sqrt[3]{x}\cdot\:\sec(2x)
derivative of (9x-9)/(-x+7)
derivative\:\frac{9x-9}{-x+7}
tangent of y=3x^2-7x+4
tangent\:y=3x^{2}-7x+4
integral of sec(y)
\int\:\sec(y)dy
tangent of (x^2+1)/(x+e^x+2)
tangent\:\frac{x^{2}+1}{x+e^{x}+2}
integral of (-x^2-3x)
\int\:(-x^{2}-3x)dx
derivative of W(A)= A/6
derivative\:W(A)=\frac{A}{6}
derivative of f(x)=(4x^3)/((3-2x)^5)
derivative\:f(x)=\frac{4x^{3}}{(3-2x)^{5}}
limit as x approaches 1 of x^2-5
\lim\:_{x\to\:1}(x^{2}-5)
y^'=y+x
y^{\prime\:}=y+x
derivative of (72000+60x)/x
derivative\:\frac{72000+60x}{x}
derivative of f(x)=cos(sin(x))
derivative\:f(x)=\cos(\sin(x))
t^2y^'-y=0
t^{2}y^{\prime\:}-y=0
integral of (e^u)/((2-e^u)^2)
\int\:\frac{e^{u}}{(2-e^{u})^{2}}du
derivative of 1/x sin^3(6x)
derivative\:\frac{1}{x}\sin^{3}(6x)
derivative of 7e^{-4x}
derivative\:7e^{-4x}
integral of-0.6x^2+80
\int\:-0.6x^{2}+80dx
integral of θsec^2(θ)
\int\:θ\sec^{2}(θ)dθ
derivative of sqrt(1+2x)
derivative\:\sqrt{1+2x}
integral of 1/(t^2-1)
\int\:\frac{1}{t^{2}-1}dt
derivative of x^2+(y^2/9)=1
\frac{d}{dx}(x^{2}+\frac{y^{2}}{9})=1
laplacetransform t^{3/2}
laplacetransform\:t^{\frac{3}{2}}
area y= 3/2 x,y=7-x^2
area\:y=\frac{3}{2}x,y=7-x^{2}
integral of t/(\sqrt[3]{t^2+9)}
\int\:\frac{t}{\sqrt[3]{t^{2}+9}}dt
y^'=8y^2
y^{\prime\:}=8y^{2}
integral of tsec(t)tan(t)
\int\:t\sec(t)\tan(t)dt
integral from 2 to infinity of e^{-5p}
\int\:_{2}^{\infty\:}e^{-5p}dp
integral from 1 to 2 of 7/(x^3+5x)
\int\:_{1}^{2}\frac{7}{x^{3}+5x}dx
integral of xcos^2(6x)
\int\:x\cos^{2}(6x)dx
derivative of 0.5x^2e^{-0.6x}
\frac{d}{dx}(0.5x^{2}e^{-0.6x})
xln(x)y^'+y=8xe^x
x\ln(x)y^{\prime\:}+y=8xe^{x}
taylor x/(1-x^2)
taylor\:\frac{x}{1-x^{2}}
sum from n=0 to infinity of 1/(nln(n))
\sum\:_{n=0}^{\infty\:}\frac{1}{n\ln(n)}
(\partial)/(\partial x)(x^2y+2y^2-4xy+6)
\frac{\partial\:}{\partial\:x}(x^{2}y+2y^{2}-4xy+6)
integral of (y^2+20y+100)/((y^2+100)^2)
\int\:\frac{y^{2}+20y+100}{(y^{2}+100)^{2}}dy
y^{''}-8y^'+19y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+19y=0
(\partial)/(\partial x)(1/(x^2+a^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{x^{2}+a^{2}})
tangent of y=(x^3-25x)^{12},(-5,0)
tangent\:y=(x^{3}-25x)^{12},(-5,0)
integral of a+18
\int\:a+18
derivative of sin(7pix)
\frac{d}{dx}(\sin(7πx))
integral of-7e^{5x}
\int\:-7e^{5x}dx
integral from 0 to pi/(24) of cos(4x)
\int\:_{0}^{\frac{π}{24}}\cos(4x)dx
integral of sqrt(9+16t^2)
\int\:\sqrt{9+16t^{2}}dt
integral of sqrt(1-cos(8x))
\int\:\sqrt{1-\cos(8x)}dx
limit as x approaches 3 of (1-x)/(x-3)
\lim\:_{x\to\:3}(\frac{1-x}{x-3})
(\partial)/(\partial y)(x^2+2y)
\frac{\partial\:}{\partial\:y}(x^{2}+2y)
derivative of x^n(ln(x)^2)
\frac{d}{dx}(x^{n}(\ln(x))^{2})
derivative of f(x)=(9-xe^x)/(x+e^x)
derivative\:f(x)=\frac{9-xe^{x}}{x+e^{x}}
derivative of (5x-2^3)
\frac{d}{dx}((5x-2)^{3})
derivative of sin^2(pi-x)
\frac{d}{dx}(\sin^{2}(π-x))
integral of (ax)/(x^2-bx)
\int\:\frac{ax}{x^{2}-bx}dx
(dy)/(dt)=(3t^2+te^{-t}+1)/(2y-4)
\frac{dy}{dt}=\frac{3t^{2}+te^{-t}+1}{2y-4}
integral of a/(x^2)
\int\:\frac{a}{x^{2}}dx
integral of 1/((x+3))
\int\:\frac{1}{(x+3)}dx
derivative of ((3-2x-x^2)/((x^2-1)))
\frac{d}{dx}(\frac{(3-2x-x^{2})}{(x^{2}-1)})
(dy)/(dt)=y*ln(t),y(e)=200
\frac{dy}{dt}=y\cdot\:\ln(t),y(e)=200
limit as x approaches 2 of (-x)/((2-x))
\lim\:_{x\to\:2}(\frac{-x}{(2-x)})
integral of e^{x+7e^x}
\int\:e^{x+7e^{x}}dx
derivative of sqrt(3x^2-4)
\frac{d}{dx}(\sqrt{3x^{2}-4})
integral of-2/3 (1-x)^{3/2}(1)
\int\:-\frac{2}{3}(1-x)^{\frac{3}{2}}(1)dx
y^{''}+25y=sec(5x)
y^{\prime\:\prime\:}+25y=\sec(5x)
integral of p
\int\:pdp
(d^2y)/(dx^2)-4(dy)/(dx)+68y=0
\frac{d^{2}y}{dx^{2}}-4\frac{dy}{dx}+68y=0
limit as x approaches-7-of (-9x)/(x+7)
\lim\:_{x\to\:-7-}(\frac{-9x}{x+7})
integral of (x+3)/(sqrt(x))
\int\:\frac{x+3}{\sqrt{x}}dx
limit as x approaches 4 of sqrt(25-x^2)
\lim\:_{x\to\:4}(\sqrt{25-x^{2}})
limit as x approaches 0 of (x+1)^2-x^2
\lim\:_{x\to\:0}((x+1)^{2}-x^{2})
(\partial)/(\partial x)(x^8+xy^5+5)
\frac{\partial\:}{\partial\:x}(x^{8}+xy^{5}+5)
derivative of y=2(6x^9-10x+4)^{-3}
derivative\:y=2(6x^{9}-10x+4)^{-3}
limit as x approaches infinity of e^3
\lim\:_{x\to\:\infty\:}(e^{3})
integral of tan^3(x)sec^6(x)
\int\:\tan^{3}(x)\sec^{6}(x)dx
derivative of f(x)=(x+1/x)^5
derivative\:f(x)=(x+\frac{1}{x})^{5}
integral from 30 to 150 of (75)/(2x^2)
\int\:_{30}^{150}\frac{75}{2x^{2}}dx
inverse oflaplace (s-5)/(s^2+s-6)
inverselaplace\:\frac{s-5}{s^{2}+s-6}
derivative of sin(xdx)
\frac{d}{dx}(\sin(x)dx)
integral of xsqrt(3x-2)
\int\:x\sqrt{3x-2}dx
derivative of (3x^{ln(3x)})
\frac{d}{dx}((3x)^{\ln(3x)})
1
..
1178
1179
1180
1181
1182
..
2459