Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(dr)/(dt)=-2tr,r(0)=2
\frac{dr}{dt}=-2tr,r(0)=2
integral of sin^{-3/2}(x)cos^3(x)
\int\:\sin^{-\frac{3}{2}}(x)\cos^{3}(x)dx
limit as x approaches-1 of 2x^2-5x+3
\lim\:_{x\to\:-1}(2x^{2}-5x+3)
integral of 1/(4+t)
\int\:\frac{1}{4+t}dt
integral of xe^{10x}
\int\:xe^{10x}dx
limit as x approaches-b of (((x+b)^7+(x+b)^{10}))/(4(x+b))
\lim\:_{x\to\:-b}(\frac{((x+b)^{7}+(x+b)^{10})}{4(x+b)})
(\partial)/(\partial x)((x+y)^2+(x+1)^2)
\frac{\partial\:}{\partial\:x}((x+y)^{2}+(x+1)^{2})
integral of 1/2 sin^2(x)
\int\:\frac{1}{2}\sin^{2}(x)dx
(\partial)/(\partial x)(x+y^2)
\frac{\partial\:}{\partial\:x}(x+y^{2})
inverse oflaplace 3/(s^2+6s+10)
inverselaplace\:\frac{3}{s^{2}+6s+10}
derivative of 2cos^3(t)
derivative\:2\cos^{3}(t)
integral of e^{1/3 x}
\int\:e^{\frac{1}{3}x}dx
limit as x approaches-2+of sqrt(x+2)
\lim\:_{x\to\:-2+}(\sqrt{x+2})
derivative of x/(1-ln(x-1))
\frac{d}{dx}(\frac{x}{1-\ln(x-1)})
tangent of f(x)=2+4x^2,(0,2)
tangent\:f(x)=2+4x^{2},(0,2)
tangent of y= 8/(sin(x)+cos(x)),(0,8)
tangent\:y=\frac{8}{\sin(x)+\cos(x)},(0,8)
(\partial)/(\partial x)((3x-y)/(x+2y))
\frac{\partial\:}{\partial\:x}(\frac{3x-y}{x+2y})
integral of (cos(x))/(sin(x)+sin^2(x))
\int\:\frac{\cos(x)}{\sin(x)+\sin^{2}(x)}dx
y^{''}+34y=0
y^{\prime\:\prime\:}+34y=0
dx+dye^{6x}=0
dx+dye^{6x}=0
derivative of f(x)=e^1
derivative\:f(x)=e^{1}
integral of 4-4x^2
\int\:4-4x^{2}dx
area |x-9|, x/2
area\:\left|x-9\right|,\frac{x}{2}
y^{''}+5y^'+4y=-13te^{5t}
y^{\prime\:\prime\:}+5y^{\prime\:}+4y=-13te^{5t}
integral from 4 to x^2 of 3sqrt(1+t^2)
\int\:_{4}^{x^{2}}3\sqrt{1+t^{2}}dt
(dy)/(dx)-y=x
\frac{dy}{dx}-y=x
y^{''}+9y=tsin(3t)
y^{\prime\:\prime\:}+9y=t\sin(3t)
derivative of sec^{11}(x)
\frac{d}{dx}(\sec^{11}(x))
sum from n=0 to infinity of 6(0.9)^{n-1}
\sum\:_{n=0}^{\infty\:}6(0.9)^{n-1}
derivative of (x^2-5x+3^4)
\frac{d}{dx}((x^{2}-5x+3)^{4})
integral from-3 to 3 of |x|
\int\:_{-3}^{3}\left|x\right|dx
integral of (4e^{2x})/(e^{2x)+12e^x+32}
\int\:\frac{4e^{2x}}{e^{2x}+12e^{x}+32}dx
integral of (2x^2-3x+4)/(2x-7)
\int\:\frac{2x^{2}-3x+4}{2x-7}dx
integral of (x^6-x^3+1)/(x^4+9x^2)
\int\:\frac{x^{6}-x^{3}+1}{x^{4}+9x^{2}}dx
limit as x approaches infinity of (log_{4}(x))/(log_{9)(x)}
\lim\:_{x\to\:\infty\:}(\frac{\log_{4}(x)}{\log_{9}(x)})
integral from 1 to 5 of sqrt(x-1)
\int\:_{1}^{5}\sqrt{x-1}dx
integral of 3/7 x^{-1/7}
\int\:\frac{3}{7}x^{-\frac{1}{7}}dx
derivative of (x^2-x/(1+3x^2))
\frac{d}{dx}(\frac{x^{2}-x}{1+3x^{2}})
sum from k=0 to infinity of k!2^kx^k
\sum\:_{k=0}^{\infty\:}k!2^{k}x^{k}
tangent of f(x)=-3cos(x),\at x= 3/4 pi
tangent\:f(x)=-3\cos(x),\at\:x=\frac{3}{4}π
integral from 0 to 1 of ((4t^3)/(1+t^4))
\int\:_{0}^{1}(\frac{4t^{3}}{1+t^{4}})dt
integral of ((x^2))/((3+4x-4x^2)^{3/2)}
\int\:\frac{(x^{2})}{(3+4x-4x^{2})^{\frac{3}{2}}}dx
slope of (0,-3),(2,0)
slope\:(0,-3),(2,0)
integral from 1 to sqrt(3 of)x3^{(x^2)}
\int\:_{1}^{\sqrt{3}}x3^{(x^{2})}dx
(dy)/(dx)=((2y+5)/(4x+9))^2
\frac{dy}{dx}=(\frac{2y+5}{4x+9})^{2}
integral from 0 to infinity of integral from 0 to infinity of e^{-x-y}
\int\:_{0}^{\infty\:}\int\:_{0}^{\infty\:}e^{-x-y}dxdy
area y=x^3-5x,y=11x
area\:y=x^{3}-5x,y=11x
limit as x approaches 8 of (8/x-1)/(x-8)
\lim\:_{x\to\:8}(\frac{\frac{8}{x}-1}{x-8})
derivative of x^{4/5}(x-9^2)
\frac{d}{dx}(x^{\frac{4}{5}}(x-9)^{2})
derivative of e^{-sqrt(x)}
derivative\:e^{-\sqrt{x}}
limit as x approaches 8 of 1/(x-8)
\lim\:_{x\to\:8}(\frac{1}{x-8})
derivative of (ln(x)/(4x))
\frac{d}{dx}(\frac{\ln(x)}{4x})
tangent of 6/(x+4)
tangent\:\frac{6}{x+4}
limit as x approaches-2-of ln(x+3)
\lim\:_{x\to\:-2-}(\ln(x+3))
tangent of 2/(sqrt(1/4+h))-4
tangent\:\frac{2}{\sqrt{\frac{1}{4}+h}}-4
integral of x/((x^2+2x+2))
\int\:\frac{x}{(x^{2}+2x+2)}dx
tangent of y=x^4e^{-x},(1, 1/e)
tangent\:y=x^{4}e^{-x},(1,\frac{1}{e})
integral of 1/((100-x^2)^2)
\int\:\frac{1}{(100-x^{2})^{2}}dx
slope of (-2.3)(6.2)
slope\:(-2.3)(6.2)
integral of (sqrt(6x))/(6+sqrt(x))
\int\:\frac{\sqrt{6x}}{6+\sqrt{x}}dx
derivative of (1+2x/(sqrt(1-x^2)))
\frac{d}{dx}(\frac{1+2x}{\sqrt{1-x^{2}}})
(\partial)/(\partial x)((2z)/(x+y))
\frac{\partial\:}{\partial\:x}(\frac{2z}{x+y})
derivative of (2x+4x^2/((1+4x)^2))
\frac{d}{dx}(\frac{2x+4x^{2}}{(1+4x)^{2}})
limit as x approaches-5-of x/(x+5)
\lim\:_{x\to\:-5-}(\frac{x}{x+5})
slope ofintercept (50,43),(60,86)
slopeintercept\:(50,43),(60,86)
(dy)/(dx)=-10xy^2
\frac{dy}{dx}=-10xy^{2}
integral from 0 to infinity of e^{-8x}
\int\:_{0}^{\infty\:}e^{-8x}dx
y^{''}-6y^'+9y=t^{-5}e^{3t}
y^{\prime\:\prime\:}-6y^{\prime\:}+9y=t^{-5}e^{3t}
derivative of ln(sin(x+y))
\frac{d}{dx}(\ln(\sin(x+y)))
derivative of f(x)=3x+6
derivative\:f(x)=3x+6
d/(dA)((1+cot(A))/(csc(A)))
\frac{d}{dA}(\frac{1+\cot(A)}{\csc(A)})
tangent of f(x)=x^4-3x^2+5,\at x=-1
tangent\:f(x)=x^{4}-3x^{2}+5,\at\:x=-1
(dy)/(dx)-y=x^2sin(x)
\frac{dy}{dx}-y=x^{2}\sin(x)
d/(dt)(t-sin(t))
\frac{d}{dt}(t-\sin(t))
(\partial)/(\partial y)(sin(x+y)+(x+y))
\frac{\partial\:}{\partial\:y}(\sin(x+y)+(x+y))
x^2y(dy)/(dx)=e^x
x^{2}y\frac{dy}{dx}=e^{x}
sum from n=1 to infinity of 3/(sqrt(n))
\sum\:_{n=1}^{\infty\:}\frac{3}{\sqrt{n}}
integral of 9sqrt(4-x^2)
\int\:9\sqrt{4-x^{2}}dx
(1/(xln(x)))^'
(\frac{1}{x\ln(x)})^{\prime\:}
derivative of (2x^2+6x+4)/(sqrt(x))
derivative\:\frac{2x^{2}+6x+4}{\sqrt{x}}
derivative of (ln(3x)/(7x^2))
\frac{d}{dx}(\frac{\ln(3x)}{7x^{2}})
tangent of f(x)= 1/x
tangent\:f(x)=\frac{1}{x}
limit as x approaches-8 of (x-8)/(|x+8|)
\lim\:_{x\to\:-8}(\frac{x-8}{\left|x+8\right|})
integral of 1/(x(ln(x))^pi)
\int\:\frac{1}{x(\ln(x))^{π}}dx
sum from n=0 to infinity of (-1)^n2^n
\sum\:_{n=0}^{\infty\:}(-1)^{n}2^{n}
integral of 1/(t^2sqrt(121-t^2))
\int\:\frac{1}{t^{2}\sqrt{121-t^{2}}}dt
integral of e^{2x}*x^2
\int\:e^{2x}\cdot\:x^{2}dx
(\partial)/(\partial x)(4(y^2-x^2)ln(x+y))
\frac{\partial\:}{\partial\:x}(4(y^{2}-x^{2})\ln(x+y))
integral of x^2*sqrt(1-x)
\int\:x^{2}\cdot\:\sqrt{1-x}dx
derivative of 1/(2x)-8/(5x^4)
derivative\:\frac{1}{2x}-\frac{8}{5x^{4}}
integral of (log_{e}(x))/x
\int\:\frac{\log_{e}(x)}{x}dx
derivative of f(x)=ln(10x)
derivative\:f(x)=\ln(10x)
taylor e^{5x+5}
taylor\:e^{5x+5}
limit as x approaches-infinity of x^2-x
\lim\:_{x\to\:-\infty\:}(x^{2}-x)
derivative of y=(3x^5+9)/(x^3)
derivative\:y=\frac{3x^{5}+9}{x^{3}}
inverse oflaplace (s^2-1)/((s-2)^6)
inverselaplace\:\frac{s^{2}-1}{(s-2)^{6}}
(dy)/(dx)+20y=sin(x)
\frac{dy}{dx}+20y=\sin(x)
derivative of 3arctan(x)
\frac{d}{dx}(3\arctan(x))
(d^3)/(dx^3)((x^2-1)^3)
\frac{d^{3}}{dx^{3}}((x^{2}-1)^{3})
integral from 0 to pi/2 of 15cos^5(x)
\int\:_{0}^{\frac{π}{2}}15\cos^{5}(x)dx
1
..
1179
1180
1181
1182
1183
..
2459