Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
((f(t))/(g(t)))'
(\frac{f(t)}{g(t)})\prime\:
derivative of sqrt(x)e^{x^2}(x^2+1^{10})
\frac{d}{dx}(\sqrt{x}e^{x^{2}}(x^{2}+1)^{10})
x(dy)/(dx)=2x^2+y,y(1)=3
x\frac{dy}{dx}=2x^{2}+y,y(1)=3
sum from n=2 to infinity of 1/(n^2+5n+6)
\sum\:_{n=2}^{\infty\:}\frac{1}{n^{2}+5n+6}
sum from n=1 to infinity of (5n)/(3n-1)
\sum\:_{n=1}^{\infty\:}\frac{5n}{3n-1}
derivative of-(2x/(x-1))
\frac{d}{dx}(-\frac{2x}{x-1})
derivative of f(x)=7(2-3x)^4
derivative\:f(x)=7(2-3x)^{4}
integral of ((x^{am}-x^n))/(sqrt(x))
\int\:\frac{(x^{am}-x^{n})}{\sqrt{x}}dx
y^'+3y=2xe^{-3x}
y^{\prime\:}+3y=2xe^{-3x}
integral of 11^x
\int\:11^{x}dx
limit as x approaches 0-of (x^2)/5-7/x
\lim\:_{x\to\:0-}(\frac{x^{2}}{5}-\frac{7}{x})
d/(dt)(1/(12sqrt(t)))
\frac{d}{dt}(\frac{1}{12\sqrt{t}})
integral of (3xsqrt(2x^2+9))/5
\int\:\frac{3x\sqrt{2x^{2}+9}}{5}dx
integral from 0 to 7 of sqrt(y+9)
\int\:_{0}^{7}\sqrt{y+9}dy
tangent of f(x)=2sin(x),\at x= pi/6
tangent\:f(x)=2\sin(x),\at\:x=\frac{π}{6}
area y=sqrt(x),y= 1/2 x,x=9
area\:y=\sqrt{x},y=\frac{1}{2}x,x=9
integral of cos^3(x/(14))
\int\:\cos^{3}(\frac{x}{14})dx
(\partial)/(\partial x)(e^{5xyz-6})
\frac{\partial\:}{\partial\:x}(e^{5xyz-6})
integral of 1+3x^2y^2
\int\:1+3x^{2}y^{2}dy
derivative of-12
\frac{d}{dx}(-12)
(d^2)/(dx^2)((4x+3)(2x^2+7x-1))
\frac{d^{2}}{dx^{2}}((4x+3)(2x^{2}+7x-1))
taylor e^{(-x^2)/2}
taylor\:e^{\frac{-x^{2}}{2}}
integral of cosh(5x+ln(6))
\int\:\cosh(5x+\ln(6))dx
integral of (3cos(1/2 x))
\int\:(3\cos(\frac{1}{2}x))dx
slope of (-3)(0.15)
slope\:(-3)(0.15)
integral of 3((cos(x)+sin(x))/(sin(2x)))
\int\:3(\frac{\cos(x)+\sin(x)}{\sin(2x)})dx
integral from 2 to 6 of 4+2x^2
\int\:_{2}^{6}4+2x^{2}dx
integral of (10+x)^{-2}
\int\:(10+x)^{-2}dx
integral of (2x^4-x)/(x^3)
\int\:\frac{2x^{4}-x}{x^{3}}dx
integral of (x+7)^7(x+8)
\int\:(x+7)^{7}(x+8)dx
derivative of f(x)=(3x^2-x+1)/x
derivative\:f(x)=\frac{3x^{2}-x+1}{x}
derivative of 4^{ln(x})
\frac{d}{dx}(4^{\ln(x)})
integral from 0 to 1 of 2pix(15-15x)
\int\:_{0}^{1}2πx(15-15x)dx
integral of (x^4-\sqrt[3]{x})/(6sqrt(x))
\int\:\frac{x^{4}-\sqrt[3]{x}}{6\sqrt{x}}dx
integral of 1/x ln(x)
\int\:\frac{1}{x}\ln(x)dx
integral of-(t-6)^2
\int\:-(t-6)^{2}dt
d/(dy)(x^{0.5}y^{0.5})
\frac{d}{dy}(x^{0.5}y^{0.5})
derivative of x^{7/9}
derivative\:x^{\frac{7}{9}}
tangent of f(x)=x^2-7,\at x=2
tangent\:f(x)=x^{2}-7,\at\:x=2
(dx)/(dt)=0.9x(1900-x)
\frac{dx}{dt}=0.9x(1900-x)
limit as x approaches 2-of (x^2)/(x^2+4)
\lim\:_{x\to\:2-}(\frac{x^{2}}{x^{2}+4})
(dy)/(dx)+y/x =9x^5y^2
\frac{dy}{dx}+\frac{y}{x}=9x^{5}y^{2}
d/(dθ)(1+2sin(θ))
\frac{d}{dθ}(1+2\sin(θ))
derivative of sin(6x^2)
\frac{d}{dx}(\sin(6x^{2}))
integral of-(e^{-2x}*(5+2x-2y^2))
\int\:-(e^{-2x}\cdot\:(5+2x-2y^{2}))dx
4xy^'-4y=7x^4
4xy^{\prime\:}-4y=7x^{4}
integral of tan^6(x)sec^2(x)
\int\:\tan^{6}(x)\sec^{2}(x)dx
derivative of x^4+6x
derivative\:x^{4}+6x
f(x)=e^xsin(x)
f(x)=e^{x}\sin(x)
derivative of x^2sqrt(x^2+1)
\frac{d}{dx}(x^{2}\sqrt{x^{2}+1})
limit as x approaches 0-of |(5x)/x |
\lim\:_{x\to\:0-}(\left|\frac{5x}{x}\right|)
integral of ysin(y)
\int\:y\sin(y)dy
integral of 1/((x^2-4x)^{3/2)}
\int\:\frac{1}{(x^{2}-4x)^{\frac{3}{2}}}dx
integral of (4x^2)/(sqrt(25-x^2))
\int\:\frac{4x^{2}}{\sqrt{25-x^{2}}}dx
integral of ((sin(31x))/(1+cos^2(31x)))
\int\:(\frac{\sin(31x)}{1+\cos^{2}(31x)})dx
integral of 6x^5(x^3-3)^6
\int\:6x^{5}(x^{3}-3)^{6}dx
derivative of e^{t+7}
derivative\:e^{t+7}
limit as x approaches-7+of (-6x)/(x+7)
\lim\:_{x\to\:-7+}(\frac{-6x}{x+7})
derivative of f(θ)=sqrt(3θ)
derivative\:f(θ)=\sqrt{3θ}
integral of sqrt(9-4x^2)
\int\:\sqrt{9-4x^{2}}dx
d/(d{x)}((8{x)/y {z}}{({x}^2+1)^2})
\frac{d}{d{x}}(\frac{8{x}{y}{z}}{({x}^{2}+1)^{2}})
integral of x^3-3x^2-x+3
\int\:x^{3}-3x^{2}-x+3dx
(\partial)/(\partial y)(3)
\frac{\partial\:}{\partial\:y}(3)
integral of sin^2(6x)
\int\:\sin^{2}(6x)dx
(\partial)/(\partial y)(ycos(yz))
\frac{\partial\:}{\partial\:y}(y\cos(yz))
derivative of x^3+3x^2-2
\frac{d}{dx}(x^{3}+3x^{2}-2)
y^'=(1+x)(1+y)
y^{\prime\:}=(1+x)(1+y)
limit as x approaches 0 of ((5e^x-5))/x
\lim\:_{x\to\:0}(\frac{(5e^{x}-5)}{x})
(\partial)/(\partial y)(x^2-3y^2+7)
\frac{\partial\:}{\partial\:y}(x^{2}-3y^{2}+7)
integral of ((x+1))/((x-1))
\int\:\frac{(x+1)}{(x-1)}dx
limit as x approaches 1+of 2
\lim\:_{x\to\:1+}(2)
tangent of f(x)=sqrt(x),(16,4)
tangent\:f(x)=\sqrt{x},(16,4)
limit as x approaches 5 of 2x^2-5x+3
\lim\:_{x\to\:5}(2x^{2}-5x+3)
derivative of y=sqrt(x+8)
derivative\:y=\sqrt{x+8}
derivative of (-4x/(x^2+1))
\frac{d}{dx}(\frac{-4x}{x^{2}+1})
derivative of f(x)=(x^3-3x^2+4)/(x^2)
derivative\:f(x)=\frac{x^{3}-3x^{2}+4}{x^{2}}
area 5-x^2,sin(x),-2.38468,2.02521
area\:5-x^{2},\sin(x),-2.38468,2.02521
laplacetransform 7e^{3t}-8e^{-t}+3
laplacetransform\:7e^{3t}-8e^{-t}+3
integral of tan^{-3}(x)sec^4(x)
\int\:\tan^{-3}(x)\sec^{4}(x)dx
integral from-10 to x of sqrt(t^2+11)
\int\:_{-10}^{x}\sqrt{t^{2}+11}dt
tangent of f(x)= 8/x ,\at x=1
tangent\:f(x)=\frac{8}{x},\at\:x=1
(\partial}{\partial x}(sin(\frac{5x)/y))
\frac{\partial\:}{\partial\:x}(\sin(\frac{5x}{y}))
(\partial)/(\partial x)((3xy-1)e^{-xy})
\frac{\partial\:}{\partial\:x}((3xy-1)e^{-xy})
integral of 2/(3x+1)
\int\:\frac{2}{3x+1}dx
integral from 4 to 8 of ln(x^2)
\int\:_{4}^{8}\ln(x^{2})dx
integral from 0 to pi/3 of xsec^2(x)
\int\:_{0}^{\frac{π}{3}}x\sec^{2}(x)dx
area 2x,x^2
area\:2x,x^{2}
integral of (2x+y+z)/((x+y)(x+z))
\int\:\frac{2x+y+z}{(x+y)(x+z)}dx
tangent of 8x^2-7x,\at 9
tangent\:8x^{2}-7x,\at\:9
y^3-(6x+8)+3xy^2y^'=0
y^{3}-(6x+8)+3xy^{2}y^{\prime\:}=0
4y^{''}+4y^'+1y=0,y(2)=-6,y^'(2)=4
4y^{\prime\:\prime\:}+4y^{\prime\:}+1y=0,y(2)=-6,y^{\prime\:}(2)=4
integral from 3 to 6 of x/(sqrt(x-3))
\int\:_{3}^{6}\frac{x}{\sqrt{x-3}}dx
limit as k approaches infinity of 1/k
\lim\:_{k\to\:\infty\:}(\frac{1}{k})
integral of (sin(x)cos(x))^2
\int\:(\sin(x)\cos(x))^{2}dx
derivative of-2x^2-5
\frac{d}{dx}(-2x^{2}-5)
area y=x^2-2,y=2
area\:y=x^{2}-2,y=2
implicit 2x^2+y^2=9
implicit\:2x^{2}+y^{2}=9
derivative of 5t^2ln(t)
derivative\:5t^{2}\ln(t)
area e^x,e^{-4x},ln(3)
area\:e^{x},e^{-4x},\ln(3)
derivative of f(x)=7e^x+x
derivative\:f(x)=7e^{x}+x
1
..
1270
1271
1272
1273
1274
..
2459