Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (1+cos^2(x)^8)
\frac{d}{dx}((1+\cos^{2}(x))^{8})
integral of ((7x+3)/(sqrt(x)))
\int\:(\frac{7x+3}{\sqrt{x}})dx
(\partial)/(\partial x)(ln(x)-1)
\frac{\partial\:}{\partial\:x}(\ln(x)-1)
integral of sec(x)-cos(x)
\int\:\sec(x)-\cos(x)dx
slope of (4,-7),(8,-7)
slope\:(4,-7),(8,-7)
f(x)=xln(x)-x
f(x)=x\ln(x)-x
derivative of 1/2 ln(x)
derivative\:\frac{1}{2}\ln(x)
derivative of f(x)= 1/((x+2)^2)
derivative\:f(x)=\frac{1}{(x+2)^{2}}
derivative of x^2-2x-15
\frac{d}{dx}(x^{2}-2x-15)
inverse oflaplace (1-e^{-2s})/s
inverselaplace\:\frac{1-e^{-2s}}{s}
limit as x approaches-infinity of 1-x^3
\lim\:_{x\to\:-\infty\:}(1-x^{3})
integral of xln(sqrt(11)x)
\int\:x\ln(\sqrt{11}x)dx
limit as x approaches (3pi)/2 of sin(x)
\lim\:_{x\to\:\frac{3π}{2}}(\sin(x))
integral of \sqrt[x]{2}
\int\:\sqrt[x]{2}dx
derivative of f(y)=ln(5x^2-x+1)
derivative\:f(y)=\ln(5x^{2}-x+1)
limit as x approaches infinity of 2x^2-x
\lim\:_{x\to\:\infty\:}(2x^{2}-x)
integral of (7+t+t^2)/(sqrt(t))
\int\:\frac{7+t+t^{2}}{\sqrt{t}}dt
integral of v/(3-0.001v^2)
\int\:\frac{v}{3-0.001v^{2}}dv
limit as x approaches infinity of ((xe^{2x}))/2
\lim\:_{x\to\:\infty\:}(\frac{(xe^{2x})}{2})
(\partial)/(\partial x)(y+arctan(y/x))
\frac{\partial\:}{\partial\:x}(y+\arctan(\frac{y}{x}))
(\partial)/(\partial y)(x^3-y^2)
\frac{\partial\:}{\partial\:y}(x^{3}-y^{2})
taylor ln(6x+1)
taylor\:\ln(6x+1)
limit as x approaches infinity of (e^{5x-3})/(ln(x-2))
\lim\:_{x\to\:\infty\:}(\frac{e^{5x-3}}{\ln(x-2)})
derivative of f(x)=cos(a^8+x^8)
derivative\:f(x)=\cos(a^{8}+x^{8})
derivative of x^3sqrt(x)
derivative\:x^{3}\sqrt{x}
integral from 0 to infinity of x^1e^{-x}
\int\:_{0}^{\infty\:}x^{1}e^{-x}dx
(\partial)/(\partial y)(3x^2y+y^2)
\frac{\partial\:}{\partial\:y}(3x^{2}y+y^{2})
derivative of ln((5x^2+9^3))
\frac{d}{dx}(\ln((5x^{2}+9)^{3}))
integral of (sqrt(sin(2x))-cos(2x))^2
\int\:(\sqrt{\sin(2x)}-\cos(2x))^{2}dx
4x(dy)/(dx)+y=x^3
4x\frac{dy}{dx}+y=x^{3}
(\partial)/(\partial x)(e^{6xe^y})
\frac{\partial\:}{\partial\:x}(e^{6xe^{y}})
(dy)/(dt)=-2ty^2
\frac{dy}{dt}=-2ty^{2}
integral from 0 to 2 of x^2e^{x^3+0}
\int\:_{0}^{2}x^{2}e^{x^{3}+0}dx
derivative of (sqrt(3x)/4)
\frac{d}{dx}(\frac{\sqrt{3x}}{4})
derivative of 7/(3x^2)
derivative\:\frac{7}{3x^{2}}
(\partial)/(\partial x)(sin^3(2x))
\frac{\partial\:}{\partial\:x}(\sin^{3}(2x))
derivative of h(t)=(7t^2+t)^{-3}
derivative\:h(t)=(7t^{2}+t)^{-3}
y^'=2y+x^2+5
y^{\prime\:}=2y+x^{2}+5
integral from 0 to pi of 3xsin(x)
\int\:_{0}^{π}3x\sin(x)dx
derivative of 3sec(6x)
\frac{d}{dx}(3\sec(6x))
inverse oflaplace (10)/(s(s+2)^2)
inverselaplace\:\frac{10}{s(s+2)^{2}}
integral from 0 to pi/2 of 3sin^2(2x)
\int\:_{0}^{\frac{π}{2}}3\sin^{2}(2x)dx
derivative of f(x)=3x^2-x
derivative\:f(x)=3x^{2}-x
derivative of f(x)=18
derivative\:f(x)=18
y^'=(xy^3)/4 ,y(0)=6
y^{\prime\:}=\frac{xy^{3}}{4},y(0)=6
inverse oflaplace s/(s^4+4)
inverselaplace\:\frac{s}{s^{4}+4}
integral of (2x^4+4x^3-x)/(x^3)
\int\:\frac{2x^{4}+4x^{3}-x}{x^{3}}dx
integral of 6^xe^x
\int\:6^{x}e^{x}dx
integral of x/((x^2+1)^{17/2)}
\int\:\frac{x}{(x^{2}+1)^{\frac{17}{2}}}dx
y^'+y=-4cos(x)
y^{\prime\:}+y=-4\cos(x)
limit as x approaches infinity of 1^x
\lim\:_{x\to\:\infty\:}(1^{x})
derivative of (7x^6+4x^3)^4
derivative\:(7x^{6}+4x^{3})^{4}
integral of (sin(x)cos(x))/(5+sin(x))
\int\:\frac{\sin(x)\cos(x)}{5+\sin(x)}dx
y^{''}+2y^'=e^t,y(0)=1,y^'(0)=2
y^{\prime\:\prime\:}+2y^{\prime\:}=e^{t},y(0)=1,y^{\prime\:}(0)=2
x^2(dy)/(dx)=y(1-x)
x^{2}\frac{dy}{dx}=y(1-x)
integral of (e^{1-x}+1/(x^{2022)})x
\int\:(e^{1-x}+\frac{1}{x^{2022}})xdx
derivative of 20cos(x)
\frac{d}{dx}(20\cos(x))
(\partial)/(\partial x)(5x^2+y^2)
\frac{\partial\:}{\partial\:x}(5x^{2}+y^{2})
tangent of-6sqrt(x),\at x=4
tangent\:-6\sqrt{x},\at\:x=4
integral of ysin(x)y
\int\:y\sin(x)ydx
integral of (e^x)/(e^{3x)-2e^{2x}+e^x-2}
\int\:\frac{e^{x}}{e^{3x}-2e^{2x}+e^{x}-2}dx
(\partial)/(\partial y)(6xy^2)
\frac{\partial\:}{\partial\:y}(6xy^{2})
integral of 4xln(7x)
\int\:4x\ln(7x)dx
(\partial)/(\partial x)(ln(2x+y+1))
\frac{\partial\:}{\partial\:x}(\ln(2x+y+1))
y^'+3y=8x,y(0)=4
y^{\prime\:}+3y=8x,y(0)=4
tangent of f(x)=1-9x^2,\at x=3
tangent\:f(x)=1-9x^{2},\at\:x=3
sum from n=0 to infinity of (-5/4)^n
\sum\:_{n=0}^{\infty\:}(-\frac{5}{4})^{n}
(dv)/(dt)=9.8-0.6
\frac{dv}{dt}=9.8-0.6
derivative of x-1/2
\frac{d}{dx}(x-\frac{1}{2})
derivative of (2-x^3/(2+x^3))
\frac{d}{dx}(\frac{2-x^{3}}{2+x^{3}})
integral from 1 to 4 of 2pix(-3/2 x+6)
\int\:_{1}^{4}2πx(-\frac{3}{2}x+6)dx
derivative of f(x)=x^3(2x-1)
derivative\:f(x)=x^{3}(2x-1)
limit as x approaches 0+of (sin(x))/(x^{1/2)}
\lim\:_{x\to\:0+}(\frac{\sin(x)}{x^{\frac{1}{2}}})
y^'=y(xy^6+4)
y^{\prime\:}=y(xy^{6}+4)
integral from-infinity to 0 of x^2e^{-x}
\int\:_{-\infty\:}^{0}x^{2}e^{-x}dx
derivative of (1-xe^x)
\frac{d}{dx}((1-x)e^{x})
inverse oflaplace 3/((s^2+9)(s^2+1))
inverselaplace\:\frac{3}{(s^{2}+9)(s^{2}+1)}
derivative of sqrt(2-x^2)-x
\frac{d}{dx}(\sqrt{2-x^{2}}-x)
area 2y=3sqrt(x),2y+3x=6,y=4
area\:2y=3\sqrt{x},2y+3x=6,y=4
integral from pi/2 to pi of cos(x)
\int\:_{\frac{π}{2}}^{π}\cos(x)dx
integral of 1/(e^x+4e^{-x)}
\int\:\frac{1}{e^{x}+4e^{-x}}dx
integral from 1 to 3 of 2pix(-x^2+4x-3)
\int\:_{1}^{3}2πx(-x^{2}+4x-3)dx
derivative of y=x^{3/2}(x+ce^x)
derivative\:y=x^{\frac{3}{2}}(x+ce^{x})
integral of 10-(14-2(16-2x)^{1/2})
\int\:10-(14-2(16-2x)^{\frac{1}{2}})dx
integral of 8x^9e^{-x^5}
\int\:8x^{9}e^{-x^{5}}dx
integral of x^4-8x^2+16
\int\:x^{4}-8x^{2}+16dx
derivative of f(x)=sqrt(3)x+sqrt(2x)
derivative\:f(x)=\sqrt{3}x+\sqrt{2x}
limit as x approaches-3 of x/((x+3)^4)
\lim\:_{x\to\:-3}(\frac{x}{(x+3)^{4}})
tangent of x^4+2/x ,\at x=1
tangent\:x^{4}+\frac{2}{x},\at\:x=1
y^{''}-ky=kxe^{-x}
y^{\prime\:\prime\:}-ky=kxe^{-x}
derivative of f(x)=(2x-1)/(sqrt(x))
derivative\:f(x)=\frac{2x-1}{\sqrt{x}}
derivative of 4sqrt(2)
\frac{d}{dx}(4\sqrt{2})
y^{''}+9y=e^t,y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}+9y=e^{t},y(0)=0,y^{\prime\:}(0)=0
integral of e^{(3x+1)}
\int\:e^{(3x+1)}dx
limit as x approaches 27 of (x-27)/(sqrt(x+9-6))
\lim\:_{x\to\:27}(\frac{x-27}{\sqrt{x+9-6}})
(\partial)/(\partial x)(3e^{5xy})
\frac{\partial\:}{\partial\:x}(3e^{5xy})
inverse oflaplace 2/(s(s+1)(s+2)(s+3))
inverselaplace\:\frac{2}{s(s+1)(s+2)(s+3)}
limit as x approaches infinity of-2x-1
\lim\:_{x\to\:\infty\:}(-2x-1)
area 4x,x^2
area\:4x,x^{2}
integral of (2y+1)
\int\:(2y+1)dy
1
..
1378
1379
1380
1381
1382
..
2459