Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 2/(2+x^2)
\int\:\frac{2}{2+x^{2}}dx
y^'=x*sqrt(y)
y^{\prime\:}=x\cdot\:\sqrt{y}
(dy)/(dt)+y/t =2
\frac{dy}{dt}+\frac{y}{t}=2
y^{''}+4y=tan(2x)
y^{\prime\:\prime\:}+4y=\tan(2x)
limit as x approaches pi/4 of cos(2x)
\lim\:_{x\to\:\frac{π}{4}}(\cos(2x))
integral of 1/(sqrt(81+x^2))
\int\:\frac{1}{\sqrt{81+x^{2}}}dx
(\partial)/(\partial y)((2x)/(y^3))
\frac{\partial\:}{\partial\:y}(\frac{2x}{y^{3}})
(dy)/(dx)=(y(ln(4y)-ln(4x)+3))/(3x)
\frac{dy}{dx}=\frac{y(\ln(4y)-\ln(4x)+3)}{3x}
laplacetransform t^{9/2}
laplacetransform\:t^{\frac{9}{2}}
integral of-1/512 sin(8x)
\int\:-\frac{1}{512}\sin(8x)dx
limit as x approaches-1 of (x^3-x)/(x-1)
\lim\:_{x\to\:-1}(\frac{x^{3}-x}{x-1})
limit as x approaches 1 of ln(3x)+e^x
\lim\:_{x\to\:1}(\ln(3x)+e^{x})
integral of \sqrt[3]{tan(8x)}sec^2(8x)
\int\:\sqrt[3]{\tan(8x)}\sec^{2}(8x)dx
limit as x approaches 2 of 2x^2+4x+a
\lim\:_{x\to\:2}(2x^{2}+4x+a)
integral of x/(16x^4-1)
\int\:\frac{x}{16x^{4}-1}dx
integral of x\sqrt[3]{4x+1}
\int\:x\sqrt[3]{4x+1}dx
derivative of (3(7-x)+5sqrt(9+x^2))/(15)
derivative\:\frac{3(7-x)+5\sqrt{9+x^{2}}}{15}
derivative of x^2tan(1/x)
\frac{d}{dx}(x^{2}\tan(\frac{1}{x}))
derivative of (x^2-2)/(2x+1)
derivative\:\frac{x^{2}-2}{2x+1}
integral of (1/(x^2-4))
\int\:(\frac{1}{x^{2}-4})dx
limit as x approaches 0 of 1/x-1/(x^2+x)
\lim\:_{x\to\:0}(\frac{1}{x}-\frac{1}{x^{2}+x})
derivative of f(x)=4+3sqrt(x)
derivative\:f(x)=4+3\sqrt{x}
derivative of 9^{4x}
\frac{d}{dx}(9^{4x})
derivative of cot^8(x)
\frac{d}{dx}(\cot^{8}(x))
integral of (x^2)/((x^2-1)^2)
\int\:\frac{x^{2}}{(x^{2}-1)^{2}}dx
integral of ln(x^4)
\int\:\ln(x^{4})dx
inverse oflaplace-1/(s^4)
inverselaplace\:-\frac{1}{s^{4}}
derivative of sin(1-1/x)
\frac{d}{dx}(\sin(1-\frac{1}{x}))
integral from 0 to pi of 16sin^4(x)
\int\:_{0}^{π}16\sin^{4}(x)dx
x^3y^'+2x^2y=-2cos(2x)y^{-1/2}
x^{3}y^{\prime\:}+2x^{2}y=-2\cos(2x)y^{-\frac{1}{2}}
integral of (9.8)t
\int\:(9.8)tdt
derivative of f(x)=(x^2+3x)(x-1)
derivative\:f(x)=(x^{2}+3x)(x-1)
derivative of 120x^3-180x^2+60
\frac{d}{dx}(120x^{3}-180x^{2}+60)
inverse oflaplace (6e^{-s})/(s(10s+1))
inverselaplace\:\frac{6e^{-s}}{s(10s+1)}
(\partial)/(\partial x)(((3))/((x+y)^3))
\frac{\partial\:}{\partial\:x}(\frac{(3)}{(x+y)^{3}})
integral of sec^3(x)tan(x)
\int\:\sec^{3}(x)\tan(x)dx
limit as x approaches (-pi/2)-of sec(x)
\lim\:_{x\to\:(-\frac{π}{2})-}(\sec(x))
(\partial)/(\partial x)(6x^2+3y^2+xy)
\frac{\partial\:}{\partial\:x}(6x^{2}+3y^{2}+xy)
slope of sqrt(7x+1)(9.8)
slope\:\sqrt{7x+1}(9.8)
f^'(x)=e^{x^2}
f^{\prime\:}(x)=e^{x^{2}}
integral of 1/(3x+4)
\int\:\frac{1}{3x+4}dx
limit as x approaches 0 of 2/(x^3)
\lim\:_{x\to\:0}(\frac{2}{x^{3}})
x^2(dy)/(dx)+y^2-xy=0
x^{2}\frac{dy}{dx}+y^{2}-xy=0
derivative of arcsec(9x)
derivative\:\arcsec(9x)
integral of 6/(xln^3(x))
\int\:\frac{6}{x\ln^{3}(x)}dx
(\partial)/(\partial y)(ln(x^5+y^5))
\frac{\partial\:}{\partial\:y}(\ln(x^{5}+y^{5}))
integral of (8+4x)/(1+x^2)
\int\:\frac{8+4x}{1+x^{2}}dx
f^'(x)=3.52x^2-30.1x+81
f^{\prime\:}(x)=3.52x^{2}-30.1x+81
derivative of (10)/(sqrt(x))
derivative\:\frac{10}{\sqrt{x}}
derivative of e^{x+8}
\frac{d}{dx}(e^{x+8})
integral of sin^7(x)cos^5(x)
\int\:\sin^{7}(x)\cos^{5}(x)dx
(\partial ^2)/(\partial x\partial y)(1/(sqrt(xy)))
\frac{\partial\:^{2}}{\partial\:x\partial\:y}(\frac{1}{\sqrt{xy}})
integral of 1+sqrt(x)
\int\:1+\sqrt{x}dx
tangent of f(x)=1-x^2
tangent\:f(x)=1-x^{2}
integral of y(1+sqrt(3+y^2))
\int\:y(1+\sqrt{3+y^{2}})dy
sum from n=1 to infinity of 14
\sum\:_{n=1}^{\infty\:}14
derivative of 8-x
derivative\:8-x
d/(dv)(ucos(v))
\frac{d}{dv}(u\cos(v))
derivative of |sin(x|)
\frac{d}{dx}(\left|\sin(x)\right|)
derivative of f(x)=x^2ln(10-5x^2)
derivative\:f(x)=x^{2}\ln(10-5x^{2})
integral of sin(φ)cos(φ)
\int\:\sin(φ)\cos(φ)dφ
derivative of arcsin(cos(x^2))
\frac{d}{dx}(\arcsin(\cos(x^{2})))
derivative of 5*tan(2x^3+2/(x^2))
\frac{d}{dx}(5\cdot\:\tan(2x^{3})+\frac{2}{x^{2}})
derivative of (x+3e^{6x})
\frac{d}{dx}((x+3)e^{6x})
(\partial)/(\partial x)((x+y^2)*e^{-4x+2y})
\frac{\partial\:}{\partial\:x}((x+y^{2})\cdot\:e^{-4x+2y})
implicit (dy)/(dx),y=(9+x)^{1/x}
implicit\:\frac{dy}{dx},y=(9+x)^{\frac{1}{x}}
limit as x approaches 5 of (34-x^2)x
\lim\:_{x\to\:5}((34-x^{2})x)
integral of (e^{-x}-e^2)(e^x+e^{-5})
\int\:(e^{-x}-e^{2})(e^{x}+e^{-5})dx
(\partial)/(\partial x)(xe^{xy}-2y)
\frac{\partial\:}{\partial\:x}(xe^{xy}-2y)
derivative of 7xe^xcsc(x)
derivative\:7xe^{x}\csc(x)
integral of 2xln(x)
\int\:2x\ln(x)dx
integral of (8x-3)/(x^2+x+1)
\int\:\frac{8x-3}{x^{2}+x+1}dx
limit as x approaches 0+of (|x|)/x
\lim\:_{x\to\:0+}(\frac{\left|x\right|}{x})
tangent of f(x)=7+4x^2-2x^3,(2,7)
tangent\:f(x)=7+4x^{2}-2x^{3},(2,7)
y^'=((2sin(x))/(sin(y))),y(0)= pi/2
y^{\prime\:}=(\frac{2\sin(x)}{\sin(y)}),y(0)=\frac{π}{2}
integral of x/((1-x)^4)
\int\:\frac{x}{(1-x)^{4}}dx
limit as x approaches 3 of x^2-2x
\lim\:_{x\to\:3}(x^{2}-2x)
derivative of (x+1^{1/2})
\frac{d}{dx}((x+1)^{\frac{1}{2}})
derivative of y= t/((t-1)^2)
derivative\:y=\frac{t}{(t-1)^{2}}
limit as x approaches 8 of \sqrt[3]{x}
\lim\:_{x\to\:8}(\sqrt[3]{x})
tangent of f(x)= 4/(5x+1),\at x=-1
tangent\:f(x)=\frac{4}{5x+1},\at\:x=-1
(ln(sin(x)))^'
(\ln(\sin(x)))^{\prime\:}
(\partial)/(\partial x)((1x,3y,4z)*(1,2,3))
\frac{\partial\:}{\partial\:x}((1x,3y,4z)\cdot\:(1,2,3))
integral from 3 to 6 of (3x-x)^2
\int\:_{3}^{6}(3x-x)^{2}dx
integral of (x^{20}-5x^4)^3(x^{19}-x^3)
\int\:(x^{20}-5x^{4})^{3}(x^{19}-x^{3})dx
tangent of f(x)= 6/x ,\at x=4
tangent\:f(x)=\frac{6}{x},\at\:x=4
derivative of f(x)=cos(a^7+x^7)
derivative\:f(x)=\cos(a^{7}+x^{7})
integral of x/(1000)sqrt(x^2+2500)
\int\:\frac{x}{1000}\sqrt{x^{2}+2500}dx
derivative of (x-5*ln(x/5))
\frac{d}{dx}((x-5)\cdot\:\ln(\frac{x}{5}))
derivative of-(375/(x^4))
\frac{d}{dx}(-\frac{375}{x^{4}})
integral from-2 to 3 of x^2-x-6
\int\:_{-2}^{3}x^{2}-x-6dx
simplify 300x-1/2 x^2
simplify\:300x-\frac{1}{2}x^{2}
limit as x approaches 6 of x+2
\lim\:_{x\to\:6}(x+2)
derivative of (343+x)^{-1/3}
derivative\:(343+x)^{-\frac{1}{3}}
derivative of 2x+7
\frac{d}{dx}(2x+7)
integral of (x)/(x^2+y^2)
\int\:\frac{xdy}{x^{2}+y^{2}}dx
integral of (2x^3+4x^2+3x-1)/(x^2+2x+1)
\int\:\frac{2x^{3}+4x^{2}+3x-1}{x^{2}+2x+1}dx
integral of (6-72x)/(sqrt(49-36x^2))
\int\:\frac{6-72x}{\sqrt{49-36x^{2}}}dx
tangent of f(x)=(x-4)(x^2+8),(1,-27)
tangent\:f(x)=(x-4)(x^{2}+8),(1,-27)
limit as x approaches 1-of-x^2+5x+(-4)
\lim\:_{x\to\:1-}(-x^{2}+5x+(-4))
1
..
627
628
629
630
631
..
2459