Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of 6/(x^2+3)
\frac{d}{dx}(\frac{6}{x^{2}+3})
limit as x approaches-2 of x+4
\lim\:_{x\to\:-2}(x+4)
derivative of (x^2+1)^2
derivative\:(x^{2}+1)^{2}
derivative of 3/(2sqrt(x))
\frac{d}{dx}(\frac{3}{2\sqrt{x}})
derivative of f(x)=8
derivative\:f(x)=8
inverse oflaplace ((s+1))/(s^2+s-1)
inverselaplace\:\frac{(s+1)}{s^{2}+s-1}
integral from 3 to 7 of t/(sqrt(7+t^2))
\int\:_{3}^{7}\frac{t}{\sqrt{7+t^{2}}}dt
integral of (3-x)/(2x^2+x-1)
\int\:\frac{3-x}{2x^{2}+x-1}dx
xv'+v=(2v)/(1-v^2)
xv\prime\:+v=\frac{2v}{1-v^{2}}
tangent of f(x)=sqrt(2x+77),\at x=2
tangent\:f(x)=\sqrt{2x+77},\at\:x=2
limit as x approaches 0-of ((6x))/(x^4)
\lim\:_{x\to\:0-}(\frac{(6x)}{x^{4}})
y^{''}-8y^'+7y=0
y^{\prime\:\prime\:}-8y^{\prime\:}+7y=0
integral from 0 to 5 of (140x^2+9800)
\int\:_{0}^{5}(140x^{2}+9800)dx
derivative of y=acos(t)+t^2sin(t)
derivative\:y=a\cos(t)+t^{2}\sin(t)
(\partial)/(\partial x)((x+y)e^{x+y})
\frac{\partial\:}{\partial\:x}((x+y)e^{x+y})
limit as x approaches 7 of 4
\lim\:_{x\to\:7}(4)
sum from n=0 to infinity of 1/(1^n)
\sum\:_{n=0}^{\infty\:}\frac{1}{1^{n}}
tangent of 6x-x^2
tangent\:6x-x^{2}
integral of (14)/(x^8)
\int\:\frac{14}{x^{8}}dx
(dy)/(dx)=7e^{x-y}
\frac{dy}{dx}=7e^{x-y}
laplacetransform e^{(-5t)}
laplacetransform\:e^{(-5t)}
limit as x approaches 0 of (|x-0|)/(0-x)
\lim\:_{x\to\:0}(\frac{\left|x-0\right|}{0-x})
derivative of f(x)=(2/3 x)^3
derivative\:f(x)=(\frac{2}{3}x)^{3}
integral of (sqrt(t^4+7t))(4t^3+7)
\int\:(\sqrt{t^{4}+7t})(4t^{3}+7)dt
limit as x approaches-9 of (x^2-1)/(9-x)
\lim\:_{x\to\:-9}(\frac{x^{2}-1}{9-x})
(\partial)/(\partial x)(yln(xy^2p^3))
\frac{\partial\:}{\partial\:x}(y\ln(xy^{2}p^{3}))
limit as x approaches 0+of 3(x)^{x/2}
\lim\:_{x\to\:0+}(3(x)^{\frac{x}{2}})
integral from 0 to 7 of 1/(sqrt(49-x^2))
\int\:_{0}^{7}\frac{1}{\sqrt{49-x^{2}}}dx
derivative of cos(sin(3x))
derivative\:\cos(\sin(3x))
integral of 3t^2+6t
\int\:3t^{2}+6tdt
(dy)/(dx)=8xsqrt(y+1)
\frac{dy}{dx}=8x\sqrt{y+1}
integral of sin(x+pi)
\int\:\sin(x+π)dx
derivative of 5arctan(x^2)
\frac{d}{dx}(5\arctan(x^{2}))
derivative of (1-5x/x)
\frac{d}{dx}(\frac{1-5x}{x})
derivative of xy^2-x^2y+xy
\frac{d}{dx}(xy^{2}-x^{2}y+xy)
derivative of 2x^2+1/(x^2)
derivative\:2x^{2}+\frac{1}{x^{2}}
integral of (x^3)/((x^2-256)^{3/2)}
\int\:\frac{x^{3}}{(x^{2}-256)^{\frac{3}{2}}}dx
slope of (0,-10),(6,10)
slope\:(0,-10),(6,10)
derivative of 2/(5x^3)
derivative\:\frac{2}{5x^{3}}
tangent of f(x)=1-x-2x^2,\at x=2
tangent\:f(x)=1-x-2x^{2},\at\:x=2
limit as x approaches 0 of 8000sqrt(x)
\lim\:_{x\to\:0}(8000\sqrt{x})
taylor 1/x ,\at 1
taylor\:\frac{1}{x},\at\:1
limit as x approaches 0 of 10
\lim\:_{x\to\:0}(10)
f(x)=cos(pix)
f(x)=\cos(πx)
derivative of (x^3-8/(x-2))
\frac{d}{dx}(\frac{x^{3}-8}{x-2})
y^{'''}-11y^{''}+24y^'=14e^x
y^{\prime\:\prime\:\prime\:}-11y^{\prime\:\prime\:}+24y^{\prime\:}=14e^{x}
limit as x approaches 1-of ln(1-x)
\lim\:_{x\to\:1-}(\ln(1-x))
derivative of 1/((1+2x^2))
\frac{d}{dx}(\frac{1}{(1+2x)^{2}})
(\partial)/(\partial z)(4xy^3(z^2+1)^3)
\frac{\partial\:}{\partial\:z}(4xy^{3}(z^{2}+1)^{3})
derivative of y=e^{x+4}+6
derivative\:y=e^{x+4}+6
integral of e^{ipiz}
\int\:e^{iπz}dz
limit as x approaches infinity of-4+3/x
\lim\:_{x\to\:\infty\:}(-4+\frac{3}{x})
derivative of sqrt(x)(x-4)
derivative\:\sqrt{x}(x-4)
sum from n=6 to infinity of e^{5-6n}
\sum\:_{n=6}^{\infty\:}e^{5-6n}
derivative of ln((sqrt(4+x^2)/x))
\frac{d}{dx}(\ln(\frac{\sqrt{4+x^{2}}}{x}))
derivative of f(t)=sqrt(t)-1/(sqrt(t))
derivative\:f(t)=\sqrt{t}-\frac{1}{\sqrt{t}}
integral of (24)/((1-x^2)^{3/2)}
\int\:\frac{24}{(1-x^{2})^{\frac{3}{2}}}dx
y^{''}-y^'=x^2-3x
y^{\prime\:\prime\:}-y^{\prime\:}=x^{2}-3x
integral from 1 to infinity of e^{-4x}
\int\:_{1}^{\infty\:}e^{-4x}dx
integral of (sec(x)tan(x))/(sec(x)-2)
\int\:\frac{\sec(x)\tan(x)}{\sec(x)-2}dx
(dy)/(dt)-5y=-9e^{2t}
\frac{dy}{dt}-5y=-9e^{2t}
derivative of (2x^3)/3+(x^2)/2+6x+6
derivative\:\frac{2x^{3}}{3}+\frac{x^{2}}{2}+6x+6
limit as x approaches 2 of ln(x)
\lim\:_{x\to\:2}(\ln(x))
integral of 1/(x^2sqrt(16-x))
\int\:\frac{1}{x^{2}\sqrt{16-x}}dx
slope of-5/(x^3),\at x=9
slope\:-\frac{5}{x^{3}},\at\:x=9
limit as x approaches 58 of (sqrt(x+6)-8)/(x-58)
\lim\:_{x\to\:58}(\frac{\sqrt{x+6}-8}{x-58})
derivative of f(t)=(25)/(t^2)-5/t
derivative\:f(t)=\frac{25}{t^{2}}-\frac{5}{t}
inverse oflaplace-2/(s(s-1)+2)
inverselaplace\:-\frac{2}{s(s-1)+2}
derivative of y=2xe^{-kx}
derivative\:y=2xe^{-kx}
taylor (-3x+14)^{4/3}
taylor\:(-3x+14)^{\frac{4}{3}}
integral of (x^2y-ln(cos(x)))
\int\:(x^{2}y-\ln(\cos(x)))dy
integral of 1/(xsqrt(2x-1))
\int\:\frac{1}{x\sqrt{2x-1}}dx
derivative of y=x(x-10)
derivative\:y=x(x-10)
tangent of y=x^4+2e^x(0.2)
tangent\:y=x^{4}+2e^{x}(0.2)
integral from 0 to 1 of sqrt(1-x^2)
\int\:_{0}^{1}\sqrt{1-x^{2}}dx
derivative of cot^2(7x)
\frac{d}{dx}(\cot^{2}(7x))
integral of k/(k-x)
\int\:\frac{k}{k-x}dx
(dy)/(dx)=(x-4)/(y+6)
\frac{dy}{dx}=\frac{x-4}{y+6}
derivative of 2x+((x^2-x)/((x^3+x+1)))
\frac{d}{dx}(2x+\frac{(x^{2}-x)}{(x^{3}+x+1)})
derivative of-x+5
\frac{d}{dx}(-x+5)
integral of cos(4x)sin(4x)
\int\:\cos(4x)\sin(4x)dx
integral of e^{(5x)/6}
\int\:e^{\frac{5x}{6}}dx
integral of 20xe^{-5x}
\int\:20xe^{-5x}dx
area y=x^2-2x,y=2x+5
area\:y=x^{2}-2x,y=2x+5
(\partial)/(\partial x)(cos(-(2y^2+4x)))
\frac{\partial\:}{\partial\:x}(\cos(-(2y^{2}+4x)))
(ln(1+x))^'
(\ln(1+x))^{\prime\:}
integral of cos(x)+sec(x)tan(x)
\int\:\cos(x)+\sec(x)\tan(x)dx
derivative of x^5f(x)
derivative\:x^{5}f(x)
integral of (2e^x+4)/(2e^x-4)
\int\:\frac{2e^{x}+4}{2e^{x}-4}dx
integral of (x^3+3x^2)
\int\:(x^{3}+3x^{2})dx
area sec^2(x),8cos(x),-pi/3 , pi/3
area\:\sec^{2}(x),8\cos(x),-\frac{π}{3},\frac{π}{3}
(\partial)/(\partial x)((3z+2)^5e^{(-x-5)}ln(4y-1))
\frac{\partial\:}{\partial\:x}((3z+2)^{5}e^{(-x-5)}\ln(4y-1))
derivative of (1-log_{e}(x))/(x^2)
derivative\:\frac{1-\log_{e}(x)}{x^{2}}
integral of sec^2(θ)
\int\:\sec^{2}(θ)dθ
tangent of f(x)=7x^4+4x^2sqrt(x)3+1
tangent\:f(x)=7x^{4}+4x^{2}\sqrt{x}3+1
integral of (1+sqrt(x))
\int\:(1+\sqrt{x})dx
integral of 1/(ln(n))
\int\:\frac{1}{\ln(n)}
integral from 0 to 1 of x*ln(x)
\int\:_{0}^{1}x\cdot\:\ln(x)dx
integral of (4x+8)/(sqrt(x^2+4x))
\int\:\frac{4x+8}{\sqrt{x^{2}+4x}}dx
y^'=(2x^6e^{y/x}+x^4y^2)/(x^5y)
y^{\prime\:}=\frac{2x^{6}e^{\frac{y}{x}}+x^{4}y^{2}}{x^{5}y}
1
..
655
656
657
658
659
..
2459