Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)= 1/(x^2+x)
domain\:f(x)=\frac{1}{x^{2}+x}
intercepts of y=-3(0.64)^x
intercepts\:y=-3(0.64)^{x}
intercepts of f(x)=2x+4
intercepts\:f(x)=2x+4
inverse of f(x)=(x^7)/9
inverse\:f(x)=\frac{x^{7}}{9}
domain of ((x^2+x-2))/(2x^2-2)
domain\:\frac{(x^{2}+x-2)}{2x^{2}-2}
line (0,4),(10,6)
line\:(0,4),(10,6)
asymptotes of f(x)=(-2x+8)/(x^2-6x+8)
asymptotes\:f(x)=\frac{-2x+8}{x^{2}-6x+8}
domain of (x+4)/(x-5)
domain\:\frac{x+4}{x-5}
extreme f(x)=13ln(x^2+1)-5x
extreme\:f(x)=13\ln(x^{2}+1)-5x
inflection ln(11x^2+3)
inflection\:\ln(11x^{2}+3)
asymptotes of f(x)=(x+3)/(x+2)
asymptotes\:f(x)=\frac{x+3}{x+2}
inverse of f(x)=(x-5)^3-1
inverse\:f(x)=(x-5)^{3}-1
slope of 5x+y=4
slope\:5x+y=4
domain of 1/(x^2(x+4))
domain\:\frac{1}{x^{2}(x+4)}
inverse of pi/2 tan(x)
inverse\:\frac{π}{2}\tan(x)
parallel y=-5x+1
parallel\:y=-5x+1
line y=2x+4
line\:y=2x+4
f(x)=x^2+3x+1
f(x)=x^{2}+3x+1
intercepts of (x-2)^2+5
intercepts\:(x-2)^{2}+5
inverse of f(x)=4x^5-2
inverse\:f(x)=4x^{5}-2
domain of y=5x
domain\:y=5x
inverse of f(x)=x^2-5x+6
inverse\:f(x)=x^{2}-5x+6
symmetry 5x^2-2y^2=4
symmetry\:5x^{2}-2y^{2}=4
inverse of f(x)=(x+1)/(x+8)
inverse\:f(x)=\frac{x+1}{x+8}
inflection f(x)=x^4-2x^2+2
inflection\:f(x)=x^{4}-2x^{2}+2
intercepts of f(x)=2x^5+16x^4-6x^3-48x^2
intercepts\:f(x)=2x^{5}+16x^{4}-6x^{3}-48x^{2}
asymptotes of f(x)=(x+sin(xpi))/(x+1)
asymptotes\:f(x)=\frac{x+\sin(xπ)}{x+1}
intercepts of f(x)=-x-1
intercepts\:f(x)=-x-1
inverse of (2x+3)/(x+1)
inverse\:\frac{2x+3}{x+1}
inverse of f(x)=80-0.2x
inverse\:f(x)=80-0.2x
domain of f(x)=4x+9
domain\:f(x)=4x+9
periodicity of sec(2x)
periodicity\:\sec(2x)
parity f(x)=6x^7-2x^3
parity\:f(x)=6x^{7}-2x^{3}
inverse of f(x)=(x-1)/(2x+3)
inverse\:f(x)=\frac{x-1}{2x+3}
intercepts of f(x)=-x^2+x
intercepts\:f(x)=-x^{2}+x
asymptotes of y=(8+x^4)/(x^2-x^4)
asymptotes\:y=\frac{8+x^{4}}{x^{2}-x^{4}}
intercepts of f(x)=-3x^2-24x-46
intercepts\:f(x)=-3x^{2}-24x-46
slope ofintercept 4x+3y=-6
slopeintercept\:4x+3y=-6
slope of q=20-2p
slope\:q=20-2p
inverse of f(x)=\sqrt[5]{x-2}+1
inverse\:f(x)=\sqrt[5]{x-2}+1
perpendicular y=-1/9+4,(2,-1)
perpendicular\:y=-\frac{1}{9}+4,(2,-1)
intercepts of f(x)=(x+1)^2-4
intercepts\:f(x)=(x+1)^{2}-4
critical f(x)=(x-4)^2
critical\:f(x)=(x-4)^{2}
inverse of (-5x+1)/(-6x+4)
inverse\:\frac{-5x+1}{-6x+4}
domain of (2x^2-7)/(-2x+5)
domain\:\frac{2x^{2}-7}{-2x+5}
symmetry y=(x-2)^2
symmetry\:y=(x-2)^{2}
intercepts of (2x^2-2x-4)/(x^2+x-12)
intercepts\:\frac{2x^{2}-2x-4}{x^{2}+x-12}
domain of (ln(x^2-4))/(2x^2+x-15)
domain\:\frac{\ln(x^{2}-4)}{2x^{2}+x-15}
range of sqrt(2x+1)
range\:\sqrt{2x+1}
intercepts of (-3x-9)/(x^2-x-12)
intercepts\:\frac{-3x-9}{x^{2}-x-12}
simplify (7.16)(8.16)
simplify\:(7.16)(8.16)
inflection 5x^4+20x^3
inflection\:5x^{4}+20x^{3}
slope of 15x+8y=801
slope\:15x+8y=801
inverse of f(x)=(x+6)^5
inverse\:f(x)=(x+6)^{5}
inverse of x^{4/3}
inverse\:x^{\frac{4}{3}}
line (290,290.16),(295,295.17)
line\:(290,290.16),(295,295.17)
domain of-3x^5+2x^2-7x+1
domain\:-3x^{5}+2x^{2}-7x+1
slope of f(x)=3-2x
slope\:f(x)=3-2x
inverse of f(x)=((-2x+5))/3
inverse\:f(x)=\frac{(-2x+5)}{3}
domain of f(x)=(2+x)/(x+1)
domain\:f(x)=\frac{2+x}{x+1}
domain of (1+x)/(1-e^{-x)}-1/x
domain\:\frac{1+x}{1-e^{-x}}-\frac{1}{x}
domain of f(x)=(x-7)/(x^2-49)
domain\:f(x)=\frac{x-7}{x^{2}-49}
domain of y=x^2
domain\:y=x^{2}
midpoint (-10,-1),(-6,7)
midpoint\:(-10,-1),(-6,7)
midpoint (-1,0),(-3,-4)
midpoint\:(-1,0),(-3,-4)
intercepts of f(x)=6x^3-6x-2x^2+2
intercepts\:f(x)=6x^{3}-6x-2x^{2}+2
range of (x+1)/(x-2)
range\:\frac{x+1}{x-2}
intercepts of y=(x-3)^2-2
intercepts\:y=(x-3)^{2}-2
domain of e^{x-2}
domain\:e^{x-2}
critical 5+1/3 x-1/2 x^2
critical\:5+\frac{1}{3}x-\frac{1}{2}x^{2}
parallel y=4x-7
parallel\:y=4x-7
inverse of f(x)=(x+7)^3
inverse\:f(x)=(x+7)^{3}
extreme f(x)=x^3-7x^2+10x
extreme\:f(x)=x^{3}-7x^{2}+10x
range of f(x)=\sqrt[5]{x/6}
range\:f(x)=\sqrt[5]{\frac{x}{6}}
slope of x=-6
slope\:x=-6
domain of sqrt(9-x)
domain\:\sqrt{9-x}
slope of 2x+4y=6x-y
slope\:2x+4y=6x-y
domain of f(x)= 2/(x+1)-sqrt(1-x)
domain\:f(x)=\frac{2}{x+1}-\sqrt{1-x}
range of 2^{-x}+4
range\:2^{-x}+4
domain of sqrt(x+4)
domain\:\sqrt{x+4}
midpoint (1.3,7.8),(6.5,1.1)
midpoint\:(1.3,7.8),(6.5,1.1)
simplify (2.7)(-6.3)
simplify\:(2.7)(-6.3)
range of f(x)=sqrt(x^2-6x+5)
range\:f(x)=\sqrt{x^{2}-6x+5}
perpendicular y=-3x+1,(-6,-2)
perpendicular\:y=-3x+1,(-6,-2)
inverse of-ln(x)
inverse\:-\ln(x)
parity (x^2-1)/(x^3-9x)
parity\:\frac{x^{2}-1}{x^{3}-9x}
domain of sqrt(x)+sqrt(5-x)
domain\:\sqrt{x}+\sqrt{5-x}
line (3.2,0.167),(3.25,0.177)
line\:(3.2,0.167),(3.25,0.177)
domain of f(x)=sqrt(1-x)
domain\:f(x)=\sqrt{1-x}
domain of f(x)=x^2+pi
domain\:f(x)=x^{2}+π
range of f(x)=log_{2}(x+1)-3
range\:f(x)=\log_{2}(x+1)-3
slope of y= x/2+1
slope\:y=\frac{x}{2}+1
domain of f(x)=(sqrt(s-1))/(s-4)
domain\:f(x)=\frac{\sqrt{s-1}}{s-4}
line (-5,5),(3,-5)
line\:(-5,5),(3,-5)
inverse of f(x)=log_{e}(2-x)
inverse\:f(x)=\log_{e}(2-x)
intercepts of f(x)=2x^2+24x-74
intercepts\:f(x)=2x^{2}+24x-74
domain of f(x)=x^3+2
domain\:f(x)=x^{3}+2
inverse of f(x)=0.47x+7
inverse\:f(x)=0.47x+7
range of 4/(x-1)
range\:\frac{4}{x-1}
periodicity of f(x)=cos(x+(5pi)/2)
periodicity\:f(x)=\cos(x+\frac{5π}{2})
1
..
197
198
199
200
201
..
1324