Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of 1/(1-sin(x))
range\:\frac{1}{1-\sin(x)}
range of (3x+|x|)/x
range\:\frac{3x+\left|x\right|}{x}
range of f(x)=8x^2+9
range\:f(x)=8x^{2}+9
domain of f(x)= 9/(x+5)
domain\:f(x)=\frac{9}{x+5}
parity f(x)=(x^2)/(x^4+1)
parity\:f(x)=\frac{x^{2}}{x^{4}+1}
asymptotes of f(x)= 1/(e^x+1)
asymptotes\:f(x)=\frac{1}{e^{x}+1}
domain of f(x)=(x-1)^2-2
domain\:f(x)=(x-1)^{2}-2
domain of 1/(sqrt(2-x))
domain\:\frac{1}{\sqrt{2-x}}
slope of y=-7/6 x+10
slope\:y=-\frac{7}{6}x+10
asymptotes of f(x)=(2x^2)/(x-5)
asymptotes\:f(x)=\frac{2x^{2}}{x-5}
intercepts of f(x)=-x^2-2x+3
intercepts\:f(x)=-x^{2}-2x+3
domain of f(x)=sqrt(21-3x)
domain\:f(x)=\sqrt{21-3x}
domain of f(x)=sqrt(x+2)-4
domain\:f(x)=\sqrt{x+2}-4
critical f(x)=x^2e^x-7
critical\:f(x)=x^{2}e^{x}-7
parallel y= 1/2 x+1(1.4)
parallel\:y=\frac{1}{2}x+1(1.4)
inverse of y=3x+2
inverse\:y=3x+2
domain of f(x)=(x^2-2)/(3x)
domain\:f(x)=\frac{x^{2}-2}{3x}
asymptotes of f(x)=x+sin(x)
asymptotes\:f(x)=x+\sin(x)
distance (2,-3),(0,0)
distance\:(2,-3),(0,0)
critical f(x)=(9-x^2)^{3/5}
critical\:f(x)=(9-x^{2})^{\frac{3}{5}}
domain of x/(8x+9)
domain\:\frac{x}{8x+9}
domain of f(x)=tan(pi/(13)x)
domain\:f(x)=\tan(\frac{π}{13}x)
inverse of (3-x)^{1/2}
inverse\:(3-x)^{\frac{1}{2}}
asymptotes of f(x)=(x^2+7x+12)/(-3x-9)
asymptotes\:f(x)=\frac{x^{2}+7x+12}{-3x-9}
range of f(x)=sqrt(x^2+5x+6)
range\:f(x)=\sqrt{x^{2}+5x+6}
range of-1/x-2
range\:-\frac{1}{x}-2
domain of 1/(3-5x)
domain\:\frac{1}{3-5x}
domain of 1/(x^2+1+2x)
domain\:\frac{1}{x^{2}+1+2x}
domain of f(x)=-3sqrt(-x)-2
domain\:f(x)=-3\sqrt{-x}-2
extreme f(x)=((x-4))/(3x-x^2)
extreme\:f(x)=\frac{(x-4)}{3x-x^{2}}
domain of f(x)=x^2-x^4
domain\:f(x)=x^{2}-x^{4}
slope ofintercept x-2y=2
slopeintercept\:x-2y=2
vertices y=-x^2+2x-3
vertices\:y=-x^{2}+2x-3
critical g(t)=(4t)/(t^2+25)
critical\:g(t)=\frac{4t}{t^{2}+25}
inverse of f(x)=((4x+5))/(x+4)
inverse\:f(x)=\frac{(4x+5)}{x+4}
inverse of f(x)={(-5,1),(4,1)}
inverse\:f(x)=\left\{(-5,1),(4,1)\right\}
line m=1,(-5,1)
line\:m=1,(-5,1)
inverse of f(x)=(-5+6x)/5
inverse\:f(x)=\frac{-5+6x}{5}
domain of f(x)=sqrt(2x+2)+sqrt(6-4x)
domain\:f(x)=\sqrt{2x+2}+\sqrt{6-4x}
inverse of y=12x-3
inverse\:y=12x-3
domain of f(x)=(sqrt(x-2))/(x-7)
domain\:f(x)=\frac{\sqrt{x-2}}{x-7}
inverse of (x+2)/(x-3)
inverse\:\frac{x+2}{x-3}
domain of sqrt(5x-10)-3
domain\:\sqrt{5x-10}-3
inverse of (1+e^x)/(1-e^x)
inverse\:\frac{1+e^{x}}{1-e^{x}}
domain of x^2-4x-12
domain\:x^{2}-4x-12
inverse of f(x)= 1/2 x-3
inverse\:f(x)=\frac{1}{2}x-3
range of \sqrt[3]{x-2}+1
range\:\sqrt[3]{x-2}+1
parity f(x)= 1/x+3
parity\:f(x)=\frac{1}{x}+3
line (2,0),(8,3)
line\:(2,0),(8,3)
domain of 9/(sqrt(x+5))
domain\:\frac{9}{\sqrt{x+5}}
perpendicular y=2x+2,(-1,3)
perpendicular\:y=2x+2,(-1,3)
perpendicular y= 1/5 x-3,(5,-21)
perpendicular\:y=\frac{1}{5}x-3,(5,-21)
range of f(x)=x^2+6x+8
range\:f(x)=x^{2}+6x+8
domain of f(x)=12x+3
domain\:f(x)=12x+3
domain of f(x)=\sqrt[4]{ln(x)}
domain\:f(x)=\sqrt[4]{\ln(x)}
domain of f(x)=sqrt(9x+3)
domain\:f(x)=\sqrt{9x+3}
range of \sqrt[3]{x-3}
range\:\sqrt[3]{x-3}
range of 1/(x-5)
range\:\frac{1}{x-5}
critical f(x)=x^2e^{4x}
critical\:f(x)=x^{2}e^{4x}
perpendicular 2x+6y=1,(-2,2)
perpendicular\:2x+6y=1,(-2,2)
range of 5x-2
range\:5x-2
asymptotes of f(x)= x/((x^2+5))
asymptotes\:f(x)=\frac{x}{(x^{2}+5)}
domain of 7/(x+3)
domain\:\frac{7}{x+3}
asymptotes of f(x)=((2-3x))/((4x+6))
asymptotes\:f(x)=\frac{(2-3x)}{(4x+6)}
domain of sqrt(-4x^2+12)
domain\:\sqrt{-4x^{2}+12}
critical f(x)= a/(x^2)+x
critical\:f(x)=\frac{a}{x^{2}}+x
line (340,340.42),(350,350.49)
line\:(340,340.42),(350,350.49)
domain of f(x)=log_{2}(1)
domain\:f(x)=\log_{2}(1)
domain of g(x)=(x+4)/(x^3-4x)
domain\:g(x)=\frac{x+4}{x^{3}-4x}
range of (sqrt(4-x^2))/(x^2-1)
range\:\frac{\sqrt{4-x^{2}}}{x^{2}-1}
parity f(x)= 2/(x^2)
parity\:f(x)=\frac{2}{x^{2}}
asymptotes of f(x)= x/(sqrt(x^2-4))
asymptotes\:f(x)=\frac{x}{\sqrt{x^{2}-4}}
critical 6x^4+32x^3
critical\:6x^{4}+32x^{3}
line 13=-1/2 (25)+b
line\:13=-\frac{1}{2}(25)+b
range of 1/(2x-4)
range\:\frac{1}{2x-4}
range of f(x)=1-x
range\:f(x)=1-x
parallel y=-3x+3
parallel\:y=-3x+3
domain of 1/(sqrt(x^2-9))
domain\:\frac{1}{\sqrt{x^{2}-9}}
critical-sin(x)-9
critical\:-\sin(x)-9
inverse of 4/(x-3)
inverse\:\frac{4}{x-3}
slope of 5x+2y=6
slope\:5x+2y=6
critical sqrt(3x^2-4)
critical\:\sqrt{3x^{2}-4}
inverse of 3-2x^3
inverse\:3-2x^{3}
asymptotes of f(x)=(x^2)/(x^2+x-90)
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+x-90}
extreme f(x)=x^3e^{-x}
extreme\:f(x)=x^{3}e^{-x}
domain of 1/(sqrt(x+4))
domain\:\frac{1}{\sqrt{x+4}}
domain of (x-7)/(12x+2)
domain\:\frac{x-7}{12x+2}
domain of sqrt(x+3)-2
domain\:\sqrt{x+3}-2
inverse of f(x)=-5/x
inverse\:f(x)=-\frac{5}{x}
range of f(x)=2(x+3)^2-2
range\:f(x)=2(x+3)^{2}-2
domain of f(x)=2x^2+8x
domain\:f(x)=2x^{2}+8x
domain of g(x)=sqrt(4-x)+sqrt(x^2-1)
domain\:g(x)=\sqrt{4-x}+\sqrt{x^{2}-1}
parity f(x)=|x+2|+|x-2|
parity\:f(x)=\left|x+2\right|+\left|x-2\right|
domain of y=3x+2
domain\:y=3x+2
critical f(x)=x^3-3x^2+3x-2
critical\:f(x)=x^{3}-3x^{2}+3x-2
domain of f(x)=-x^2+1
domain\:f(x)=-x^{2}+1
domain of y=(x^2-81)/(x-9)
domain\:y=\frac{x^{2}-81}{x-9}
domain of f(x)=sqrt((x+2)/(x^2-8x+15))
domain\:f(x)=\sqrt{\frac{x+2}{x^{2}-8x+15}}
inverse of y=6-5x
inverse\:y=6-5x
inverse of f(x)=e^{x+1}
inverse\:f(x)=e^{x+1}
1
..
351
352
353
354
355
..
1324