Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
area x+2y=7,x+8=y^2
area\:x+2y=7,x+8=y^{2}
integral of 14x^6y^{-4}-12x^5y^{-3}
\int\:14x^{6}y^{-4}-12x^{5}y^{-3}dx
limit as x approaches 3 of sqrt(12-x)-3
\lim\:_{x\to\:3}(\sqrt{12-x}-3)
limit as x approaches infinity of (1+(2/x))^{(x/4)}
\lim\:_{x\to\:\infty\:}((1+(\frac{2}{x}))^{(\frac{x}{4})})
integral from 0 to 3 of x^3-5x
\int\:_{0}^{3}x^{3}-5xdx
(dy)/(dx)= 1/7 sqrt(y)cos^2(sqrt(y))
\frac{dy}{dx}=\frac{1}{7}\sqrt{y}\cos^{2}(\sqrt{y})
(ysin(x)+xycos(x))dx+(xsin(x)+1)dy=0
(y\sin(x)+xy\cos(x))dx+(x\sin(x)+1)dy=0
limit as x approaches 0 of x/(e^x)
\lim\:_{x\to\:0}(\frac{x}{e^{x}})
limit as n approaches infinity of ln(n)
\lim\:_{n\to\:\infty\:}(\ln(n))
tangent of x^2+4/x-10,\at x=8
tangent\:x^{2}+\frac{4}{x}-10,\at\:x=8
slope of (-3,5),(-7,-9)
slope\:(-3,5),(-7,-9)
integral of (5x^3)/(sqrt(3+x^2))
\int\:\frac{5x^{3}}{\sqrt{3+x^{2}}}dx
integral of sqrt(x)-1
\int\:\sqrt{x}-1dx
tangent of y=((x-1)/(x+1))
tangent\:y=(\frac{x-1}{x+1})
(\partial)/(\partial x)(x^2y+2x^2-y-2)
\frac{\partial\:}{\partial\:x}(x^{2}y+2x^{2}-y-2)
limit as x approaches 0+of f(x)
\lim\:_{x\to\:0+}(f(x))
integral of (y^2)/(1+x^2)
\int\:\frac{y^{2}}{1+x^{2}}dx
laplacetransform f(t)=7t+3
laplacetransform\:f(t)=7t+3
integral of x/((x+2)(3x-1))
\int\:\frac{x}{(x+2)(3x-1)}dx
integral from 1 to 4 of 1/(sqrt(x-1))
\int\:_{1}^{4}\frac{1}{\sqrt{x-1}}dx
integral of ln(1-x)
\int\:\ln(1-x)dx
(dy)/(dt)=2(t+1)y,y(0)=1
\frac{dy}{dt}=2(t+1)y,y(0)=1
derivative of e^x-xe^x
\frac{d}{dx}(e^{x}-xe^{x})
integral from 1 to 2 of 3r^4ln(r)
\int\:_{1}^{2}3r^{4}\ln(r)dr
limit as x approaches 2 of sqrt(6x+13)
\lim\:_{x\to\:2}(\sqrt{6x+13})
integral of (3x)/(4-2x^2)
\int\:\frac{3x}{4-2x^{2}}dx
derivative of-(25000/(x^2)+10)
\frac{d}{dx}(-\frac{25000}{x^{2}}+10)
derivative of (4x^5+5/(x^3))
\frac{d}{dx}(\frac{4x^{5}+5}{x^{3}})
integral from 2 to 7 of 1/(sqrt(x^2-4))
\int\:_{2}^{7}\frac{1}{\sqrt{x^{2}-4}}dx
derivative of (25)/(t^2)-5/t
derivative\:\frac{25}{t^{2}}-\frac{5}{t}
derivative of xe^{2x}(arcsin(3x))
\frac{d}{dx}(xe^{2x}(\arcsin(3x)))
1200(dy)/(dx)=12000-200y-1800
1200\frac{dy}{dx}=12000-200y-1800
integral of (-2)/(x^6)
\int\:\frac{-2}{x^{6}}dx
tangent of f(x)=(7x)/(x+7),(3,2.1)
tangent\:f(x)=\frac{7x}{x+7},(3,2.1)
sum from n=1 to infinity of (1/3)^{n-1}
\sum\:_{n=1}^{\infty\:}(\frac{1}{3})^{n-1}
integral of xsqrt(144-x^2)
\int\:x\sqrt{144-x^{2}}dx
integral of 3xe-2x
\int\:3xe-2xdx
integral of (y^2-2y+4)/(y(y-2)^2)
\int\:\frac{y^{2}-2y+4}{y(y-2)^{2}}dy
y^{''''}-y^{''}=4x+2xe^{-x}
y^{\prime\:\prime\:\prime\:\prime\:}-y^{\prime\:\prime\:}=4x+2xe^{-x}
integral of (sin(3t))
\int\:(\sin(3t))dt
slope of (1.4)(7.1)
slope\:(1.4)(7.1)
integral from 3 to 9 of 1/(x(ln(x))^2)
\int\:_{3}^{9}\frac{1}{x(\ln(x))^{2}}dx
derivative of f(x)=(1-4x)/(3+x)
derivative\:f(x)=\frac{1-4x}{3+x}
limit as x approaches 5 of ln(x-4)+1/2
\lim\:_{x\to\:5}(\ln(x-4)+\frac{1}{2})
integral of none
\int\:nonedx
integral of (e^{1/(x^3)})/(x^4)
\int\:\frac{e^{\frac{1}{x^{3}}}}{x^{4}}dx
(\partial)/(\partial x)(8x^2cos(5)x^3)
\frac{\partial\:}{\partial\:x}(8x^{2}\cos(5)x^{3})
derivative of (ln(x)/(e^x))
\frac{d}{dx}(\frac{\ln(x)}{e^{x}})
integral from 0 to 2 of 1/(sqrt(9-x^2))
\int\:_{0}^{2}\frac{1}{\sqrt{9-x^{2}}}dx
derivative of f(x)=3x^4
derivative\:f(x)=3x^{4}
limit as x approaches 7 of (x^2-4)/(7-x)
\lim\:_{x\to\:7}(\frac{x^{2}-4}{7-x})
integral of arctan(5t)
\int\:\arctan(5t)dt
limit as x approaches 0 of (x^2+1)/(x^2)
\lim\:_{x\to\:0}(\frac{x^{2}+1}{x^{2}})
derivative of y= 1/(x(8+ln(x)))
derivative\:y=\frac{1}{x(8+\ln(x))}
xy^'+y=-3xy^2
xy^{\prime\:}+y=-3xy^{2}
integral of e^{-3x}cos(2x)
\int\:e^{-3x}\cos(2x)dx
(5x+2)+(5y-5)y^'=0
(5x+2)+(5y-5)y^{\prime\:}=0
tangent of (4x)/(x^2+1)(1.1)
tangent\:\frac{4x}{x^{2}+1}(1.1)
integral of (\sqrt[3]{x^8})
\int\:(\sqrt[3]{x^{8}})dx
integral of 1/(13x)
\int\:\frac{1}{13x}dx
integral of 9arctan(1/x)
\int\:9\arctan(\frac{1}{x})dx
limit as x approaches infinity of ln(x)+ln(1/(1/x+1))
\lim\:_{x\to\:\infty\:}(\ln(x)+\ln(\frac{1}{\frac{1}{x}+1}))
y^2(1-x^2)^{1/2}dy=arcsin(x)dx
y^{2}(1-x^{2})^{\frac{1}{2}}dy=\arcsin(x)dx
derivative of g(u)=(8u^2)/((u^2+u)^3)
derivative\:g(u)=\frac{8u^{2}}{(u^{2}+u)^{3}}
integral of-x^2-2x+3
\int\:-x^{2}-2x+3dx
integral of (2x+1)/(x^2+x+3)
\int\:\frac{2x+1}{x^{2}+x+3}dx
derivative of f(x)=(x^2-81)/(x-9)
derivative\:f(x)=\frac{x^{2}-81}{x-9}
integral of sin(12x)cos(3x)
\int\:\sin(12x)\cos(3x)dx
derivative of (x^2/((1-y^2)))
\frac{d}{dx}(\frac{x^{2}}{(1-y^{2})})
integral of ((y^2)/4)^2
\int\:(\frac{y^{2}}{4})^{2}dy
derivative of e^{x^3+6x^2}
\frac{d}{dx}(e^{x^{3}+6x^{2}})
integral of 1/(10(x+2))
\int\:\frac{1}{10(x+2)}dx
integral of 4cot^3(x)csc^3(x)
\int\:4\cot^{3}(x)\csc^{3}(x)dx
tangent of y=\sqrt[5]{2x^3+8x},(2,2)
tangent\:y=\sqrt[5]{2x^{3}+8x},(2,2)
limit as x approaches 0 of (sin(0))/0
\lim\:_{x\to\:0}(\frac{\sin(0)}{0})
area x^3-3x^2-9x+27,x+3
area\:x^{3}-3x^{2}-9x+27,x+3
limit as x approaches 2 of x^2+2x+3
\lim\:_{x\to\:2}(x^{2}+2x+3)
area y=4x+12,y=x^2
area\:y=4x+12,y=x^{2}
integral of 1/((x^2+6x+10)^2)
\int\:\frac{1}{(x^{2}+6x+10)^{2}}dx
derivative of y=5x^{10}e^x
derivative\:y=5x^{10}e^{x}
integral of xsin(4)x^2
\int\:x\sin(4)x^{2}dx
integral of sec^3(7x)tan^5(7x)
\int\:\sec^{3}(7x)\tan^{5}(7x)dx
laplacetransform f(t)=t^2-2t
laplacetransform\:f(t)=t^{2}-2t
y^{''''}+32y^{''}+256y=0
y^{\prime\:\prime\:\prime\:\prime\:}+32y^{\prime\:\prime\:}+256y=0
integral of (x^2-17x+4)/(x+7)
\int\:\frac{x^{2}-17x+4}{x+7}dx
derivative of x^2+4x-8
\frac{d}{dx}(x^{2}+4x-8)
limit as x approaches 0 of ((e^{3x}-1))/(sin(5x))
\lim\:_{x\to\:0}(\frac{(e^{3x}-1)}{\sin(5x)})
integral of cos^3(x)sin^3(x)
\int\:\cos^{3}(x)\sin^{3}(x)dx
y^{''}-81y=0
y^{\prime\:\prime\:}-81y=0
derivative of e^{2x+4}
derivative\:e^{2x+4}
derivative of (2x+3)/(3x-2)
derivative\:\frac{2x+3}{3x-2}
integral of (\sqrt[3]{2x+1})
\int\:(\sqrt[3]{2x+1})dx
limit as h approaches+0 of-(5h)/(x(x+h))
\lim\:_{h\to\:+0}(-\frac{5h}{x(x+h)})
derivative of-3/(1-3x)
\frac{d}{dx}(-\frac{3}{1-3x})
integral of (6000)/(6x+70)
\int\:\frac{6000}{6x+70}dx
integral of 3/(sqrt(16-9x^2))
\int\:\frac{3}{\sqrt{16-9x^{2}}}dx
derivative of y= x/(x+b/x)
derivative\:y=\frac{x}{x+\frac{b}{x}}
taylor 1/((1+x)^3),0
taylor\:\frac{1}{(1+x)^{3}},0
inverse oflaplace 3/(s^2+9)
inverselaplace\:\frac{3}{s^{2}+9}
tangent of h(x)= 9/x ,\at x=2
tangent\:h(x)=\frac{9}{x},\at\:x=2
1
..
1255
1256
1257
1258
1259
..
2459