Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 1 to 32 of (sin(\sqrt[5]{x}))/(\sqrt[5]{x^4)}
\int\:_{1}^{32}\frac{\sin(\sqrt[5]{x})}{\sqrt[5]{x^{4}}}dx
limit as x approaches 0 of ((1))/(x^2)
\lim\:_{x\to\:0}(\frac{(1)}{x^{2}})
integral of ((x^2-x+12))/(x^3+6x)
\int\:\frac{(x^{2}-x+12)}{x^{3}+6x}dx
(1+cos(x))(dy)/(dx)=(1+e^{-y})sin(x)
(1+\cos(x))\frac{dy}{dx}=(1+e^{-y})\sin(x)
y^'+2xy=e^x
y^{\prime\:}+2xy=e^{x}
integral of x^2+9
\int\:x^{2}+9dx
limit as x approaches-6 of x+1
\lim\:_{x\to\:-6}(x+1)
limit as x approaches-1 of x+x^2+x^3
\lim\:_{x\to\:-1}(x+x^{2}+x^{3})
integral of 1/(y^2sqrt(5-y^2))
\int\:\frac{1}{y^{2}\sqrt{5-y^{2}}}dy
derivative of (xsin(x)/(1+cos(x)))
\frac{d}{dx}(\frac{x\sin(x)}{1+\cos(x)})
integral from 1 to e of 4/z
\int\:_{1}^{e}\frac{4}{z}dz
(\partial)/(\partial y)(x^{1/y})
\frac{\partial\:}{\partial\:y}(x^{\frac{1}{y}})
(d^2)/(dx^2)y+64y=0
\frac{d^{2}}{dx^{2}}y+64y=0
(\partial)/(\partial x)((2y)/(x^2-y^2))
\frac{\partial\:}{\partial\:x}(\frac{2y}{x^{2}-y^{2}})
y^{''}+10y^'+25y=14e^{-5x}
y^{\prime\:\prime\:}+10y^{\prime\:}+25y=14e^{-5x}
limit as x approaches infinity of-1/x
\lim\:_{x\to\:\infty\:}(-\frac{1}{x})
limit as x approaches 1 of cos(pi/3)
\lim\:_{x\to\:1}(\cos(\frac{π}{3}))
derivative of 2/3 pi+1
\frac{d}{dx}(\frac{2}{3}π+1)
(\partial}{\partial x}(\frac{(2x+y))/z)
\frac{\partial\:}{\partial\:x}(\frac{(2x+y)}{z})
integral of cos(4x)cos(5x)
\int\:\cos(4x)\cos(5x)dx
derivative of x^2+6x-3
derivative\:x^{2}+6x-3
49y^{''}+42y^'+9y=0,y(0)=a,y^'(0)=2
49y^{\prime\:\prime\:}+42y^{\prime\:}+9y=0,y(0)=a,y^{\prime\:}(0)=2
area x=((y-3)^2)/3 ,y=9-x
area\:x=\frac{(y-3)^{2}}{3},y=9-x
7sqrt(xy)(dy)/(dx)=2
7\sqrt{xy}\frac{dy}{dx}=2
derivative of 1+5x
\frac{d}{dx}(1+5x)
derivative of (x-2/(x^2+4))
\frac{d}{dx}(\frac{x-2}{x^{2}+4})
12=((33000)dy)/(dt)+1/(22*10^{-6)}y
12=\frac{(33000)dy}{dt}+\frac{1}{22\cdot\:10^{-6}}y
limit as h approaches 0 of 3/(sqrt(3h+1)+1)
\lim\:_{h\to\:0}(\frac{3}{\sqrt{3h+1}+1})
derivative of e^{xi}
\frac{d}{dx}(e^{xi})
(\partial)/(\partial x)(8/(x^2+y^2+z^2))
\frac{\partial\:}{\partial\:x}(\frac{8}{x^{2}+y^{2}+z^{2}})
sum from n=1 to infinity of (4/3)^n
\sum\:_{n=1}^{\infty\:}(\frac{4}{3})^{n}
integral of 3cos^2(x)sin(x)
\int\:3\cos^{2}(x)\sin(x)dx
integral of (2t^2+3)^{4/3}t^3
\int\:(2t^{2}+3)^{\frac{4}{3}}t^{3}dt
derivative of f(x)=(x^2+3x-1)e^x
derivative\:f(x)=(x^{2}+3x-1)e^{x}
derivative of f(x)=-x^2+5x
derivative\:f(x)=-x^{2}+5x
derivative of-3log_{4}(x)
derivative\:-3\log_{4}(x)
limit as n approaches infinity of |((2n)^{2n})/((2n+2)^{2n)}|
\lim\:_{n\to\:\infty\:}(\left|\frac{(2n)^{2n}}{(2n+2)^{2n}}\right|)
limit as x approaches 2 of 3x-1
\lim\:_{x\to\:2}(3x-1)
(dy)/(dt)=6y+2t-4
\frac{dy}{dt}=6y+2t-4
integral of (-2)/(2x-3)
\int\:\frac{-2}{2x-3}dx
sum from n=1 to infinity of 5^nx^n
\sum\:_{n=1}^{\infty\:}5^{n}x^{n}
derivative of arctan(4x)
derivative\:\arctan(4x)
derivative of e^x+sin(x)
\frac{d}{dx}(e^{x}+\sin(x))
integral of u/(sqrt(u))
\int\:\frac{u}{\sqrt{u}}du
(dy)/(dx)+4y=9
\frac{dy}{dx}+4y=9
derivative of (x-2/(9x^2e^x))
\frac{d}{dx}(\frac{x-2}{9x^{2}e^{x}})
(\partial)/(\partial x)(8ln((3xy)/(5z)))
\frac{\partial\:}{\partial\:x}(8\ln(\frac{3xy}{5z}))
integral of (e^t-\sqrt[4]{16t}+3/(t^3))
\int\:(e^{t}-\sqrt[4]{16t}+\frac{3}{t^{3}})dt
(\partial)/(\partial y)(e^{x+2y}sin(y))
\frac{\partial\:}{\partial\:y}(e^{x+2y}\sin(y))
area g(x)=x^2,[0,1]
area\:g(x)=x^{2},[0,1]
limit as x approaches infinity of 4x-1
\lim\:_{x\to\:\infty\:}(4x-1)
integral from 0 to ln(3) of (e^t)/(sqrt(e^{2t)+49)}
\int\:_{0}^{\ln(3)}\frac{e^{t}}{\sqrt{e^{2t}+49}}dt
(dy)/(dx)=cos^2(y)
\frac{dy}{dx}=\cos^{2}(y)
y^{''}+81y=0
y^{\prime\:\prime\:}+81y=0
inverse oflaplace (60)/(2-5s)
inverselaplace\:\frac{60}{2-5s}
sum from k=1 to infinity of 1/(k^{1+1/k)}
\sum\:_{k=1}^{\infty\:}\frac{1}{k^{1+\frac{1}{k}}}
derivative of f(x)=x^{5/2}
derivative\:f(x)=x^{\frac{5}{2}}
limit as x approaches-1 of x(x+3)
\lim\:_{x\to\:-1}(x(x+3))
sum from n=0 to infinity of (2/7)^n
\sum\:_{n=0}^{\infty\:}(\frac{2}{7})^{n}
area y=sqrt(x+2),y=2,y= 1/(x+1)
area\:y=\sqrt{x+2},y=2,y=\frac{1}{x+1}
y^{''}+256y=64cos(7t)
y^{\prime\:\prime\:}+256y=64\cos(7t)
integral from 0 to pi of sin^2(t)
\int\:_{0}^{π}\sin^{2}(t)dt
derivative of 4/(x-2)
\frac{d}{dx}(\frac{4}{x-2})
derivative of ln(3+2x)
\frac{d}{dx}(\ln(3+2x))
limit as x approaches 1 of sqrt(x^2+1)
\lim\:_{x\to\:1}(\sqrt{x^{2}+1})
integral of 1+x
\int\:1+xdx
derivative of (3x+5)^4sqrt(x)
derivative\:(3x+5)^{4}\sqrt{x}
integral of te^{-2}
\int\:te^{-2}dt
derivative of y=-4x^7-1
derivative\:y=-4x^{7}-1
integral of (cos(x)-sin(x))
\int\:(\cos(x)-\sin(x))dx
derivative of 1-1/(sqrt(1-x^2))
\frac{d}{dx}(1-\frac{1}{\sqrt{1-x^{2}}})
(\partial)/(\partial x)((9x^2)/((x-y)^2))
\frac{\partial\:}{\partial\:x}(\frac{9x^{2}}{(x-y)^{2}})
integral from 0 to 1 of (x)
\int\:_{0}^{1}(x)dx
integral of-(3(x+a))/(x^2+a^2)
\int\:-\frac{3(x+a)}{x^{2}+a^{2}}dx
integral of cot^6(2x)
\int\:\cot^{6}(2x)dx
implicit (dy)/(dx),y=(arctan(9x))^2
implicit\:\frac{dy}{dx},y=(\arctan(9x))^{2}
integral from 0 to infinity of 1/(x^2+9)
\int\:_{0}^{\infty\:}\frac{1}{x^{2}+9}dx
limit as x approaches-5 of 1/(x^2-25)
\lim\:_{x\to\:-5}(\frac{1}{x^{2}-25})
integral of (x-1)/x
\int\:\frac{x-1}{x}dx
tangent of f(x)=ln(x^3),\at x=e^5
tangent\:f(x)=\ln(x^{3}),\at\:x=e^{5}
tangent of f(x)=(x^3+6x)^4,\at x=2
tangent\:f(x)=(x^{3}+6x)^{4},\at\:x=2
integral from 0 to 2 of (2x)/((x^2+3)^3)
\int\:_{0}^{2}\frac{2x}{(x^{2}+3)^{3}}dx
slope of x^2+x
slope\:x^{2}+x
derivative of sin((pix)/3)
derivative\:\sin(\frac{πx}{3})
integral of ((4+x+x^2))/(sqrt(x))
\int\:\frac{(4+x+x^{2})}{\sqrt{x}}dx
derivative of f(x)=ln((x^2-1)/(x^2+1))
derivative\:f(x)=\ln(\frac{x^{2}-1}{x^{2}+1})
derivative of (3+x^2/(3-x))
\frac{d}{dx}(\frac{3+x^{2}}{3-x})
implicit x^3y^3-y=x
implicit\:x^{3}y^{3}-y=x
derivative of sin(x+cos(y))
\frac{d}{dx}(\sin(x)+\cos(y))
derivative of f(x)= 3/(2x-4)
derivative\:f(x)=\frac{3}{2x-4}
(\partial)/(\partial x)(xe^{4y}sin(3z))
\frac{\partial\:}{\partial\:x}(xe^{4y}\sin(3z))
integral of 2/(x^2+10x+29)
\int\:\frac{2}{x^{2}+10x+29}dx
(1+x^2)(dy)/(dx)-(1+y^2)=0
(1+x^{2})\frac{dy}{dx}-(1+y^{2})=0
tangent of f(x)=sqrt(x^2-x+5),\at x=5
tangent\:f(x)=\sqrt{x^{2}-x+5},\at\:x=5
derivative of 1/(sqrt(1+sin^2(x)))
\frac{d}{dx}(\frac{1}{\sqrt{1+\sin^{2}(x)}})
derivative of 2e^{-x^2}x-2e^{-x^2}x^3
\frac{d}{dx}(2e^{-x^{2}}x-2e^{-x^{2}}x^{3})
derivative of f(x)=2x^{-3/4}
derivative\:f(x)=2x^{-\frac{3}{4}}
derivative of 3x-5x^2
derivative\:3x-5x^{2}
d/(d{x)}(e^{(3{x}^2{y}+4{z})}-{x}{y}^3{z}^4+({x}^2)/(2{y)}-4{x}^3{z}^4)
\frac{d}{d{x}}(e^{(3{x}^{2}{y}+4{z})}-{x}{y}^{3}{z}^{4}+\frac{{x}^{2}}{2{y}}-4{x}^{3}{z}^{4})
integral of e^{-st}(1)
\int\:e^{-st}(1)dt
1
..
188
189
190
191
192
..
2459