Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of 2-1/x
\frac{d}{dx}(2-\frac{1}{x})
integral of (1/(ln(x))+ln(ln(x)))
\int\:(\frac{1}{\ln(x)}+\ln(\ln(x)))dx
limit as h approaches 2+of e^{2/h}
\lim\:_{h\to\:2+}(e^{\frac{2}{h}})
derivative of f(x)=log_{7}(xe^x)
derivative\:f(x)=\log_{7}(xe^{x})
integral from 0 to 1 of e^5
\int\:_{0}^{1}e^{5}dx
(\partial)/(\partial y)(zarcsin(y/x))
\frac{\partial\:}{\partial\:y}(z\arcsin(\frac{y}{x}))
integral of (2-t)e^{-st}
\int\:(2-t)e^{-st}dt
limit as x approaches 0 of (ln(1-2x))/x
\lim\:_{x\to\:0}(\frac{\ln(1-2x)}{x})
integral of (2u)/(1-u^2)
\int\:\frac{2u}{1-u^{2}}du
slope ofintercept (-9,5),(-3,3)
slopeintercept\:(-9,5),(-3,3)
derivative of 3^{x-2}
\frac{d}{dx}(3^{x-2})
tangent of f(x)=sqrt(4-x),\at x=0
tangent\:f(x)=\sqrt{4-x},\at\:x=0
(\partial)/(\partial x)(xy-2/x-4/y+8)
\frac{\partial\:}{\partial\:x}(xy-\frac{2}{x}-\frac{4}{y}+8)
(\partial)/(\partial v)(u+v)
\frac{\partial\:}{\partial\:v}(u+v)
derivative of x/(sqrt(x^21))
derivative\:\frac{x}{\sqrt{x^{2}1}}
derivative of-2/((1+x^{3/2)})
\frac{d}{dx}(-\frac{2}{(1+x)^{\frac{3}{2}}})
tangent of f(x)= 7/(x+1),\at x=7
tangent\:f(x)=\frac{7}{x+1},\at\:x=7
integral of cos(x)cos(y)
\int\:\cos(x)\cos(y)dx
integral of 1/(x^{14)}
\int\:\frac{1}{x^{14}}dx
integral of (5x+2)^2
\int\:(5x+2)^{2}dx
integral from 0 to 1 of 2pix(x-x^2)
\int\:_{0}^{1}2πx(x-x^{2})dx
y^{''}+10y=0,y(0)=2,y^'(0)=10
y^{\prime\:\prime\:}+10y=0,y(0)=2,y^{\prime\:}(0)=10
integral of tan^7(x)sec^{17}(x)
\int\:\tan^{7}(x)\sec^{17}(x)dx
derivative of s(t)= 1/(t^2+6t-7)
derivative\:s(t)=\frac{1}{t^{2}+6t-7}
integral of (ln(4x))/x
\int\:\frac{\ln(4x)}{x}dx
(\partial)/(\partial x)(-(2y)/(x^2+y^2+1))
\frac{\partial\:}{\partial\:x}(-\frac{2y}{x^{2}+y^{2}+1})
integral of e^{7x}cos(8x)
\int\:e^{7x}\cos(8x)dx
integral from 0 to 2pi of cos(x)
\int\:_{0}^{2π}\cos(x)dx
(\partial)/(\partial x)((4x-5y)^{3/2})
\frac{\partial\:}{\partial\:x}((4x-5y)^{\frac{3}{2}})
integral of 3e^{-0.2x}
\int\:3e^{-0.2x}dx
derivative of \sqrt[4]{(2x+x^5)^7}
derivative\:\sqrt[4]{(2x+x^{5})^{7}}
y^'=((x+3y))/((y-3x))
y^{\prime\:}=\frac{(x+3y)}{(y-3x)}
derivative of sec(5x)
derivative\:\sec(5x)
derivative of f(x)=sqrt(5x^2+5x+7)
derivative\:f(x)=\sqrt{5x^{2}+5x+7}
(\partial)/(\partial x)(arctan(y/((x-1))))
\frac{\partial\:}{\partial\:x}(\arctan(\frac{y}{(x-1)}))
(\partial)/(\partial x)(sqrt(62-2x^2-2y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{62-2x^{2}-2y^{2}})
derivative of ln(1/(1+x))
\frac{d}{dx}(\ln(\frac{1}{1+x}))
f(x)=arcsec(x)
f(x)=\arcsec(x)
y^'+7xe^y=0
y^{\prime\:}+7xe^{y}=0
integral from-1 to 0 of 7x
\int\:_{-1}^{0}7xdx
integral of (e^{x^2})
\int\:(e^{x^{2}})dx
derivative of y=(2x+1)(x-2)^3
derivative\:y=(2x+1)(x-2)^{3}
(\partial)/(\partial x)((1-e^{-x})(1-e^{-y}))
\frac{\partial\:}{\partial\:x}((1-e^{-x})(1-e^{-y}))
derivative of-csc^2(x)
derivative\:-\csc^{2}(x)
(dy)/(dx)=sqrt(9x+y)-9
\frac{dy}{dx}=\sqrt{9x+y}-9
integral of (4y^2-6y+x+2)/x
\int\:\frac{4y^{2}-6y+x+2}{x}
y^{''}-2y^'=0
y^{\prime\:\prime\:}-2y^{\prime\:}=0
(\partial)/(\partial x)((x+y)ln(x+y))
\frac{\partial\:}{\partial\:x}((x+y)\ln(x+y))
laplacetransform 2+3e^{-3t}
laplacetransform\:2+3e^{-3t}
integral of x^5e^{-x^2}
\int\:x^{5}e^{-x^{2}}dx
tangent of f(x)= 2/3 x^3+4x^2+6x-5
tangent\:f(x)=\frac{2}{3}x^{3}+4x^{2}+6x-5
limit as x approaches 4+of x+1
\lim\:_{x\to\:4+}(x+1)
integral of x^2sqrt(x)
\int\:x^{2}\sqrt{x}dx
integral of e^{3x}*sin(2x)
\int\:e^{3x}\cdot\:\sin(2x)dx
(dy)/(dt)=ky^2
\frac{dy}{dt}=ky^{2}
integral from 0 to 64 of 3/(x^{2/3)}
\int\:_{0}^{64}\frac{3}{x^{\frac{2}{3}}}dx
limit as x approaches-1 of-x+2
\lim\:_{x\to\:-1}(-x+2)
y^{''}-2y^'+5y=2sin(t),y(0)=0,y^'(0)=1
y^{\prime\:\prime\:}-2y^{\prime\:}+5y=2\sin(t),y(0)=0,y^{\prime\:}(0)=1
integral of e^{itx}
\int\:e^{itx}dx
limit as x approaches 2 of (5x)/(x-3)
\lim\:_{x\to\:2}(\frac{5x}{x-3})
(\partial)/(\partial z)(e^{xz})
\frac{\partial\:}{\partial\:z}(e^{xz})
integral of (ln(x))^4
\int\:(\ln(x))^{4}dx
derivative of f(x)=2+x^2
derivative\:f(x)=2+x^{2}
sum from n=0 to infinity of (nx^n)/(n+1)
\sum\:_{n=0}^{\infty\:}\frac{nx^{n}}{n+1}
(\partial)/(\partial y)(ye^{x^2-y})
\frac{\partial\:}{\partial\:y}(ye^{x^{2}-y})
integral of sqrt(x)(sin(x^{3/2}-1))^2
\int\:\sqrt{x}(\sin(x^{\frac{3}{2}}-1))^{2}dx
derivative of (2x^2-7sqrt(x)+6^2)
\frac{d}{dx}((2x^{2}-7\sqrt{x}+6)^{2})
laplacetransform 7
laplacetransform\:7
f(x)=sqrt(6-x)
f(x)=\sqrt{6-x}
integral of \sqrt[3]{tan(7x)}sec^2(7x)
\int\:\sqrt[3]{\tan(7x)}\sec^{2}(7x)dx
(\partial)/(\partial y)(y^2-4x)
\frac{\partial\:}{\partial\:y}(y^{2}-4x)
(dy)/(dt)=y^{1/3}t^{2/5}
\frac{dy}{dt}=y^{\frac{1}{3}}t^{\frac{2}{5}}
y^'=4+e^{y-4x+1},y(0)=-1
y^{\prime\:}=4+e^{y-4x+1},y(0)=-1
derivative of 38(e^{x^2}+2e^{x^2}x^2)
derivative\:38(e^{x^{2}}+2e^{x^{2}}x^{2})
inverse oflaplace (0.5)/((s^2+s+1)*s)
inverselaplace\:\frac{0.5}{(s^{2}+s+1)\cdot\:s}
slope of y= 1/(1-x),x=3
slope\:y=\frac{1}{1-x},x=3
(dy)/(dx)=6y(10-y)
\frac{dy}{dx}=6y(10-y)
(dy)/(dx)= 1/8 sqrt(y)cos^2(sqrt(y))
\frac{dy}{dx}=\frac{1}{8}\sqrt{y}\cos^{2}(\sqrt{y})
integral of (1+sqrt(x)+x)/x
\int\:\frac{1+\sqrt{x}+x}{x}dx
derivative of (x^2)/(sqrt(x+1))
derivative\:\frac{x^{2}}{\sqrt{x+1}}
integral of (e^{yx}+ye^{yx}x+2y-1/(x^2))
\int\:(e^{yx}+ye^{yx}x+2y-\frac{1}{x^{2}})dy
derivative of x(1-x^6)
\frac{d}{dx}(x(1-x)^{6})
integral from 0 to 2 of (x^2-10x)
\int\:_{0}^{2}(x^{2}-10x)dx
integral of ln(2x)(x)
\int\:\ln(2x)(x)dx
area 4x^4-4x^2,6x^2
area\:4x^{4}-4x^{2},6x^{2}
limit as x approaches 0+of 1/x sin(1/x)
\lim\:_{x\to\:0+}(\frac{1}{x}\sin(\frac{1}{x}))
integral of tan^2(x)
\int\:\tan^{2}(x)dx
maclaurin f(x)=(1+x)^{-6/5}
maclaurin\:f(x)=(1+x)^{-\frac{6}{5}}
limit as x approaches 3 of (5*4^x)/(9^x)
\lim\:_{x\to\:3}(\frac{5\cdot\:4^{x}}{9^{x}})
integral of cot(x)csc^3(x)
\int\:\cot(x)\csc^{3}(x)dx
derivative of sqrt(x)ln(6x)
\frac{d}{dx}(\sqrt{x}\ln(6x))
(\partial)/(\partial x)(sin((x*y)/(y-4)))
\frac{\partial\:}{\partial\:x}(\sin(\frac{x\cdot\:y}{y-4}))
integral of 1+x/(x^2+y^2)
\int\:1+\frac{x}{x^{2}+y^{2}}dy
tangent of f(x)=8x^2-x^3,\at x=2
tangent\:f(x)=8x^{2}-x^{3},\at\:x=2
(\partial)/(\partial x)(y/(2x))
\frac{\partial\:}{\partial\:x}(\frac{y}{2x})
(\partial)/(\partial x)(-4xy+x^4+y^4)
\frac{\partial\:}{\partial\:x}(-4xy+x^{4}+y^{4})
y^{''}+4y=0
y^{\prime\:\prime\:}+4y=0
integral of xsin(1-2x)
\int\:x\sin(1-2x)dx
integral of (2-x)/(x^2-2x+1)
\int\:\frac{2-x}{x^{2}-2x+1}dx
area x^3,x
area\:x^{3},x
1
..
228
229
230
231
232
..
2459