Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of y=((x+2))/((x+1)^2),\at x=0
tangent\:y=\frac{(x+2)}{(x+1)^{2}},\at\:x=0
(\partial)/(\partial x)(sin(pi(5x-y)))
\frac{\partial\:}{\partial\:x}(\sin(π(5x-y)))
y^2y^'=e^x
y^{2}y^{\prime\:}=e^{x}
limit as x approaches infinity of f(x)
\lim\:_{x\to\:\infty\:}(f(x))
derivative of 3x^2sin(x+3xcos(x))
\frac{d}{dx}(3x^{2}\sin(x)+3x\cos(x))
d/(dt)(acos(3t)+bsin(3t))
\frac{d}{dt}(a\cos(3t)+b\sin(3t))
(\partial)/(\partial a)(a/(sin(θ)))
\frac{\partial\:}{\partial\:a}(\frac{a}{\sin(θ)})
derivative of xarctan(x)
\frac{d}{dx}(x\arctan(x))
x(dy)/(dx)=y+sqrt(x^2+y^2)
x\frac{dy}{dx}=y+\sqrt{x^{2}+y^{2}}
integral of sin^3(x)x
\int\:\sin^{3}(x)xdx
limit as x approaches 1 of sqrt(1+x)
\lim\:_{x\to\:1}(\sqrt{1+x})
(d^2)/(dx^2)(8z^2e^z)
\frac{d^{2}}{dx^{2}}(8z^{2}e^{z})
derivative of f(x)=sqrt(2x+9)
derivative\:f(x)=\sqrt{2x+9}
integral of (sin(2x+1))/(cos^2(2x+1))
\int\:\frac{\sin(2x+1)}{\cos^{2}(2x+1)}dx
derivative of (2x+1^3)
\frac{d}{dx}((2x+1)^{3})
derivative of f(x)=4sqrt(x)-x
derivative\:f(x)=4\sqrt{x}-x
derivative of cos^3(x/(x+1))
\frac{d}{dx}(\cos^{3}(\frac{x}{x+1}))
limit as x approaches infinity of x-5
\lim\:_{x\to\:\infty\:}(x-5)
taylor e^{-x}0.25
taylor\:e^{-x}0.25
tangent of f(x)=1-2x^2,-7,\at x=2
tangent\:f(x)=1-2x^{2},-7,\at\:x=2
derivative of \sqrt[4]{(3x-2/(x^2+1)})
\frac{d}{dx}(\sqrt[4]{\frac{3x-2}{x^{2}+1}})
tangent of f(x)=5x-4sqrt(x),\at x=1
tangent\:f(x)=5x-4\sqrt{x},\at\:x=1
tangent of y= 1/(5+2x),(2, 1/9)
tangent\:y=\frac{1}{5+2x},(2,\frac{1}{9})
(y^'-e^{-t}+4)/y =-4,y(0)=-4
\frac{y^{\prime\:}-e^{-t}+4}{y}=-4,y(0)=-4
integral of x^3sqrt(x^2+45)
\int\:x^{3}\sqrt{x^{2}+45}dx
(2y+1)dx+((x^2-y)/x)dy=0
(2y+1)dx+(\frac{x^{2}-y}{x})dy=0
integral from 0 to 2 of (x(64-(x+3)^3))
\int\:_{0}^{2}(x(64-(x+3)^{3}))dx
derivative of (x^2-x^3)
\frac{d}{dx}((x^{2}-x)^{3})
derivative of 1/3 (x^2+2^{3/2}-5)
\frac{d}{dx}(\frac{1}{3}(x^{2}+2)^{\frac{3}{2}}-5)
derivative of 1/(sec^2(x))
\frac{d}{dx}(\frac{1}{\sec^{2}(x)})
tangent of f(x)= 2/(x+1),\at x=7
tangent\:f(x)=\frac{2}{x+1},\at\:x=7
limit as x approaches 0+of (12)/(x^2)
\lim\:_{x\to\:0+}(\frac{12}{x^{2}})
integral from 0 to 2 of (x^2)/2
\int\:_{0}^{2}\frac{x^{2}}{2}dx
integral of 3/(sqrt(4x-x^2))
\int\:\frac{3}{\sqrt{4x-x^{2}}}dx
integral of (2x^2+2)/((x^2-2x+2)^2)
\int\:\frac{2x^{2}+2}{(x^{2}-2x+2)^{2}}dx
derivative of g(x)=(6x^2)/(2-x)
derivative\:g(x)=\frac{6x^{2}}{2-x}
integral of sin^4(3x)-cos^4(3x)
\int\:\sin^{4}(3x)-\cos^{4}(3x)dx
integral of e^{-st}*sin(t)
\int\:e^{-st}\cdot\:\sin(t)dt
integral of 1/(x^{1/3)+1}
\int\:\frac{1}{x^{\frac{1}{3}}+1}dx
(dy)/(dx)=xe^{2y}
\frac{dy}{dx}=xe^{2y}
inverse oflaplace 1/((s-1)*(s-2))
inverselaplace\:\frac{1}{(s-1)\cdot\:(s-2)}
derivative of 6arcsin(x^3)
\frac{d}{dx}(6\arcsin(x^{3}))
derivative of (1+cos(2x)^2)
\frac{d}{dx}((1+\cos(2x))^{2})
derivative of (x^2-2sqrt(x)/x)
\frac{d}{dx}(\frac{x^{2}-2\sqrt{x}}{x})
tangent of f(x)=sqrt(x^2+3x),(1,2)
tangent\:f(x)=\sqrt{x^{2}+3x},(1,2)
integral of (9-9x)/(1-sqrt(x))
\int\:\frac{9-9x}{1-\sqrt{x}}dx
tangent of y=sqrt(x),\at x=4
tangent\:y=\sqrt{x},\at\:x=4
sum from n=0 to infinity} 1/(sqrt(n) of-1/(\sqrt{n+1))
\sum\:_{n=0}^{\infty\:}\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}
y^{'''}+4y^{''}+4y^'=8x
y^{\prime\:\prime\:\prime\:}+4y^{\prime\:\prime\:}+4y^{\prime\:}=8x
integral of x^4e^{x/2}
\int\:x^{4}e^{\frac{x}{2}}dx
(\partial)/(\partial x)(sqrt(2g(x)x))
\frac{\partial\:}{\partial\:x}(\sqrt{2g(x)x})
(dy)/(dx)= x/(9y)
\frac{dy}{dx}=\frac{x}{9y}
(\partial)/(\partial x)(8arcsin(x^2))
\frac{\partial\:}{\partial\:x}(8\arcsin(x^{2}))
(dy)/(dx)=(e^x-1)/(e^y),f(1)=0
\frac{dy}{dx}=\frac{e^{x}-1}{e^{y}},f(1)=0
derivative of 7sqrt(x)
derivative\:7\sqrt{x}
derivative of (x-1^2\sqrt[3]{x+2})
\frac{d}{dx}((x-1)^{2}\sqrt[3]{x+2})
derivative of (3x^{3/5}-x)/(x-1)
derivative\:\frac{3x^{\frac{3}{5}}-x}{x-1}
integral of (x+1)/(x^2+2x+5)
\int\:\frac{x+1}{x^{2}+2x+5}dx
integral of-5x^4
\int\:-5x^{4}dx
integral of csc^2(x)-2e^x
\int\:\csc^{2}(x)-2e^{x}dx
integral from 0 to 1/4 of 1/(1+16x^2)
\int\:_{0}^{\frac{1}{4}}\frac{1}{1+16x^{2}}dx
(dy)/(dt)=y^2t^2
\frac{dy}{dt}=y^{2}t^{2}
integral of xcos(x^2+1)
\int\:x\cos(x^{2}+1)dx
y^{''}+4sqrt(6)y^'+24y=0
y^{\prime\:\prime\:}+4\sqrt{6}y^{\prime\:}+24y=0
derivative of cot(x^3)
\frac{d}{dx}(\cot(x^{3}))
limit as x approaches 0 of+(1/x)
\lim\:_{x\to\:0}(+(\frac{1}{x}))
(x^2-1)y^'+2xy^2=0
(x^{2}-1)y^{\prime\:}+2xy^{2}=0
d/(dθ)(6cos(θ)cos(θ))
\frac{d}{dθ}(6\cos(θ)\cos(θ))
sum from n=1 to infinity of 4/(n(n+1))
\sum\:_{n=1}^{\infty\:}\frac{4}{n(n+1)}
derivative of ln(x+1/(ln(x)))
\frac{d}{dx}(\ln(x)+\frac{1}{\ln(x)})
limit as x approaches 0 of sqrt(1+2x)
\lim\:_{x\to\:0}(\sqrt{1+2x})
derivative of \sqrt[3]{n/4}+50
derivative\:\sqrt[3]{\frac{n}{4}}+50
(\partial)/(\partial x)(xe^{x^2y^2})
\frac{\partial\:}{\partial\:x}(xe^{x^{2}y^{2}})
limit as x approaches 1 of b+1/(x-1)
\lim\:_{x\to\:1}(b+\frac{1}{x-1})
area y=4x,y= 4/x ,x=4
area\:y=4x,y=\frac{4}{x},x=4
inverse oflaplace 1/(s(s^2+6s+13))
inverselaplace\:\frac{1}{s(s^{2}+6s+13)}
limit as x approaches 1 of sqrt(10x+15)
\lim\:_{x\to\:1}(\sqrt{10x+15})
integral of ((x^2)/4+2x+3)
\int\:(\frac{x^{2}}{4}+2x+3)dx
derivative of (ln(6x)/(6x))
\frac{d}{dx}(\frac{\ln(6x)}{6x})
(dy)/(dx)=sqrt(5y)*e^{x+6}
\frac{dy}{dx}=\sqrt{5y}\cdot\:e^{x+6}
derivative of (ln(x)^2(sin(x)))
\frac{d}{dx}((\ln(x))^{2}(\sin(x)))
(x^2+2xy-4y^2)dx-(x^2-8xy-4y^2)dy=0
(x^{2}+2xy-4y^{2})dx-(x^{2}-8xy-4y^{2})dy=0
derivative of y=(f(x))/(x^9)
derivative\:y=\frac{f(x)}{x^{9}}
derivative of sin(x)cos(x)-sin^2(x)+x
derivative\:\sin(x)\cos(x)-\sin^{2}(x)+x
tangent of f(x)=sqrt(x/5),\at x=125
tangent\:f(x)=\sqrt{\frac{x}{5}},\at\:x=125
integral of 3xe^{-x}
\int\:3xe^{-x}dx
integral of (y+1)^2
\int\:(y+1)^{2}dy
limit as x approaches 0 of (e^{8x}-1)/x
\lim\:_{x\to\:0}(\frac{e^{8x}-1}{x})
slope ofintercept (2,1),(-4,-2)
slopeintercept\:(2,1),(-4,-2)
integral of 4x^2cos(x/5)
\int\:4x^{2}\cos(\frac{x}{5})dx
limit as x approaches 3-of 2/((x-3)^3)
\lim\:_{x\to\:3-}(\frac{2}{(x-3)^{3}})
integral of (sqrt(x)-5)/(sqrt(x)+3)
\int\:\frac{\sqrt{x}-5}{\sqrt{x}+3}dx
area y=(x-2)^2,y=x
area\:y=(x-2)^{2},y=x
derivative of f(x)=arcsin(3x)
derivative\:f(x)=\arcsin(3x)
derivative of f(x)=2x(x^2+1)
derivative\:f(x)=2x(x^{2}+1)
integral of 7x(x^2+2)^2
\int\:7x(x^{2}+2)^{2}dx
integral of cot(x)cos(x)
\int\:\cot(x)\cos(x)dx
integral from-2 to 2 of x(4-x^2)
\int\:_{-2}^{2}x(4-x^{2})dx
integral from 0 to pi of (sin^2(x))^2
\int\:_{0}^{π}(\sin^{2}(x))^{2}dx
4xy^'-20y=x^{-9}
4xy^{\prime\:}-20y=x^{-9}
1
..
226
227
228
229
230
..
2459