Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
sum from n=0 to infinity of (1.67)^n
\sum\:_{n=0}^{\infty\:}(1.67)^{n}
implicit (dy)/(dx),y^9=x^8
implicit\:\frac{dy}{dx},y^{9}=x^{8}
integral of (x^2-8)^3(2x)
\int\:(x^{2}-8)^{3}(2x)dx
integral from 1 to infinity of x^{-7}
\int\:_{1}^{\infty\:}x^{-7}dx
derivative of (x+2/(x^2+4x+13))
\frac{d}{dx}(\frac{x+2}{x^{2}+4x+13})
sum from n=1 to infinity of (60)/(7^n)
\sum\:_{n=1}^{\infty\:}\frac{60}{7^{n}}
f(t)=sin(t)+tcos(t)
f(t)=\sin(t)+t\cos(t)
(\partial)/(\partial y)((x^2+y^2+z^2)^{-1/2})
\frac{\partial\:}{\partial\:y}((x^{2}+y^{2}+z^{2})^{-\frac{1}{2}})
integral of sin^3(8xco)s^{-2}8x
\int\:\sin^{3}(8xco)s^{-2}8xdx
derivative of f(x)=sin^2(tan(sqrt(x)))
derivative\:f(x)=\sin^{2}(\tan(\sqrt{x}))
sum from n=1 to infinity of (e/pi)^n
\sum\:_{n=1}^{\infty\:}(\frac{e}{π})^{n}
tangent of y=x^3,(1,1)
tangent\:y=x^{3},(1,1)
d/(dt)(-1/(t+1))
\frac{d}{dt}(-\frac{1}{t+1})
derivative of (x/(x+1)^5)
\frac{d}{dx}((\frac{x}{x+1})^{5})
limit as t approaches 0 of (sin(kt))/t
\lim\:_{t\to\:0}(\frac{\sin(kt)}{t})
derivative of f(x)= x/a
derivative\:f(x)=\frac{x}{a}
tangent of f(x)=x^2(4-x)^2,\at x=1
tangent\:f(x)=x^{2}(4-x)^{2},\at\:x=1
integral from 0 to 1 of 1/(1-x^2)
\int\:_{0}^{1}\frac{1}{1-x^{2}}dx
limit as x approaches 0 of 3/(e^x+1)
\lim\:_{x\to\:0}(\frac{3}{e^{x}+1})
(\partial)/(\partial x)(6x^2+7y)
\frac{\partial\:}{\partial\:x}(6x^{2}+7y)
derivative of |x|^3-x^2
\frac{d}{dx}(\left|x\right|^{3}-x^{2})
limit as x approaches infinity of sqrt((12x^3-4x+1)/(1+3x+2x^3))
\lim\:_{x\to\:\infty\:}(\sqrt{\frac{12x^{3}-4x+1}{1+3x+2x^{3}}})
derivative of (8x-7)/(5x+12)
derivative\:\frac{8x-7}{5x+12}
derivative of {f}(x(x)^{-1}(ax))
\frac{d}{dx}({f}(x)(x)^{-1}(ax))
d/(dt)(t^2-1)
\frac{d}{dt}(t^{2}-1)
integral of (sin(x))/(2e^x)
\int\:\frac{\sin(x)}{2e^{x}}dx
integral from-3 to 3 of |x|-(x^2-6)
\int\:_{-3}^{3}\left|x\right|-(x^{2}-6)dx
inverse oflaplace-1/2*1/((x^2+1)^2)
inverselaplace\:-\frac{1}{2}\cdot\:\frac{1}{(x^{2}+1)^{2}}
integral from 0 to 2 of (2x-x^2)^2
\int\:_{0}^{2}(2x-x^{2})^{2}dx
integral from 5 to 6 of x/(x-5)
\int\:_{5}^{6}\frac{x}{x-5}dx
integral of (x^2)/(x+5)
\int\:\frac{x^{2}}{x+5}dx
area x=9y^3,x=9y^2
area\:x=9y^{3},x=9y^{2}
derivative of sin(xln(3x))
\frac{d}{dx}(\sin(x)\ln(3x))
integral of (x-3)/(x^3+3x^2+2x)
\int\:\frac{x-3}{x^{3}+3x^{2}+2x}dx
integral of e^{-(2r)/a}
\int\:e^{-\frac{2r}{a}}dr
limit as x approaches-9 of (x+10)/(x+9)
\lim\:_{x\to\:-9}(\frac{x+10}{x+9})
integral of (2x+3)^{-3}
\int\:(2x+3)^{-3}dx
derivative of (5x^2+e^x/(x^3))
\frac{d}{dx}(\frac{5x^{2}+e^{x}}{x^{3}})
derivative of 1/(1-4x)
\frac{d}{dx}(\frac{1}{1-4x})
derivative of (x^2/(3x-4))
\frac{d}{dx}(\frac{x^{2}}{3x-4})
limit as x approaches-5 of f(x)
\lim\:_{x\to\:-5}(f(x))
integral of 2x^5
\int\:2x^{5}dx
integral from 0 to x of (2t^2+sqrt(t))
\int\:_{0}^{x}(2t^{2}+\sqrt{t})dt
limit as x approaches infinity of x_{1}
\lim\:_{x\to\:\infty\:}(x_{1})
integral of (8-x)
\int\:(8-x)dx
derivative of f(x)=sqrt(x^2-1)
derivative\:f(x)=\sqrt{x^{2}-1}
area 7x-x^2,2x,(0,10)
area\:7x-x^{2},2x,(0,10)
derivative of x(4x-12)^3
derivative\:x(4x-12)^{3}
integral of 5sin(5x)sin(x)
\int\:5\sin(5x)\sin(x)dx
integral of (x^3)/((9-x^4)^2)
\int\:\frac{x^{3}}{(9-x^{4})^{2}}dx
derivative of f(x)=2x^e
derivative\:f(x)=2x^{e}
integral of 4x+3x^2+12x^3+C
\int\:4x+3x^{2}+12x^{3}+Cdx
integral of (cos(pi*x))/(sin(pi*x))
\int\:\frac{\cos(π\cdot\:x)}{\sin(π\cdot\:x)}dx
(dy)/(dx)=e^{2x+y}
\frac{dy}{dx}=e^{2x+y}
(dy)/(dx)=xe^{x^2-ln(y^2)}
\frac{dy}{dx}=xe^{x^{2}-\ln(y^{2})}
integral from-2 to 3 of (10x^3-4x)(x+2)
\int\:_{-2}^{3}(10x^{3}-4x)(x+2)dx
derivative of f(x)=xsin(2/x)
derivative\:f(x)=x\sin(\frac{2}{x})
limit as x approaches 2+of 2-x^2
\lim\:_{x\to\:2+}(2-x^{2})
derivative of-6/(x^2)-5/x
derivative\:-\frac{6}{x^{2}}-\frac{5}{x}
limit as x approaches 2 of x^2-x-2
\lim\:_{x\to\:2}(x^{2}-x-2)
limit as x approaches-2 of 1
\lim\:_{x\to\:-2}(1)
integral of (2+x^2)/(sqrt(x))
\int\:\frac{2+x^{2}}{\sqrt{x}}dx
(\partial)/(\partial x)(cos(2y-3x))
\frac{\partial\:}{\partial\:x}(\cos(2y-3x))
integral of (2x+1)ln(x+1)
\int\:(2x+1)\ln(x+1)dx
(\partial)/(\partial x)(1/(1+e))
\frac{\partial\:}{\partial\:x}(\frac{1}{1+e})
integral of x/(2y^4)
\int\:\frac{x}{2y^{4}}dx
derivative of (3sin(x)/(2+cos(x)))
\frac{d}{dx}(\frac{3\sin(x)}{2+\cos(x)})
integral from 0 to 2 of 4t
\int\:_{0}^{2}4tdt
integral of 3/(x^{3/4)}-4\sqrt[3]{x}+1
\int\:\frac{3}{x^{\frac{3}{4}}}-4\sqrt[3]{x}+1dx
derivative of f(x)=(4x-3)/(5x^2+3x)
derivative\:f(x)=\frac{4x-3}{5x^{2}+3x}
integral of xsin^3(x)
\int\:x\sin^{3}(x)dx
integral of x^2arctan(x)
\int\:x^{2}\arctan(x)dx
derivative of x^3-4x
\frac{d}{dx}(x^{3}-4x)
(d^3)/(dx^3)(7/(x^2))
\frac{d^{3}}{dx^{3}}(\frac{7}{x^{2}})
(\partial)/(\partial x)(a^x)
\frac{\partial\:}{\partial\:x}(a^{x})
integral of (5x)/((x^2+5)^2)
\int\:\frac{5x}{(x^{2}+5)^{2}}dx
derivative of-cos(x/2)
\frac{d}{dx}(-\cos(\frac{x}{2}))
tangent of (-6x)/((x^2+1))
tangent\:\frac{-6x}{(x^{2}+1)}
derivative of (sin^2(x)/(1+cos^2(x)))
\frac{d}{dx}(\frac{\sin^{2}(x)}{1+\cos^{2}(x)})
integral of 1/((4x+5)^2)
\int\:\frac{1}{(4x+5)^{2}}dx
tangent of (8x)/((x+1)^2)
tangent\:\frac{8x}{(x+1)^{2}}
integral of 1/((y^2+1))
\int\:\frac{1}{(y^{2}+1)}dy
derivative of cos((1-e^{2x}/(1+e^{2x)}))
\frac{d}{dx}(\cos(\frac{1-e^{2x}}{1+e^{2x}}))
derivative of F(r)= 7/(r^3)
derivative\:F(r)=\frac{7}{r^{3}}
integral from 0 to 1 of 5ln(4x)
\int\:_{0}^{1}5\ln(4x)dx
area sqrt(x)+3, 1/2 x+3
area\:\sqrt{x}+3,\frac{1}{2}x+3
(dx)/(dt)=xe^t-3e^t+x-3
\frac{dx}{dt}=xe^{t}-3e^{t}+x-3
integral from 0 to 60 of 60e^{-0.02x}
\int\:_{0}^{60}60e^{-0.02x}dx
slope of (0,-9),(4,-10)
slope\:(0,-9),(4,-10)
derivative of sin(\sqrt[3]{x}+\sqrt[3]{sin(x)})
\frac{d}{dx}(\sin(\sqrt[3]{x})+\sqrt[3]{\sin(x)})
derivative of 6(6+(18)/(x^3))
derivative\:6(6+\frac{18}{x^{3}})
(\partial)/(\partial y)(e^{-x-y})
\frac{\partial\:}{\partial\:y}(e^{-x-y})
tangent of f(x)=sqrt(7x+1),\at x=9
tangent\:f(x)=\sqrt{7x+1},\at\:x=9
sum from n=0 to infinity of 3/(n(n+3))
\sum\:_{n=0}^{\infty\:}\frac{3}{n(n+3)}
integral of (2x+1)/(x^6+18x^4+81x^2)
\int\:\frac{2x+1}{x^{6}+18x^{4}+81x^{2}}dx
sum from n=1 to infinity of 5/(n^2+9n+7)
\sum\:_{n=1}^{\infty\:}\frac{5}{n^{2}+9n+7}
limit as x approaches pi/2 of xsin(x)
\lim\:_{x\to\:\frac{π}{2}}(x\sin(x))
derivative of e^{2.4}
\frac{d}{dx}(e^{2.4})
integral of (x^3sin(npix))
\int\:(x^{3}\sin(nπx))dx
((log_{10}(x))/x)^'
(\frac{\log_{10}(x)}{x})^{\prime\:}
1
..
358
359
360
361
362
..
2459