Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 2 of sqrt(x-2)
\lim\:_{x\to\:2}(\sqrt{x-2})
integral of 1/(x*(1-x))
\int\:\frac{1}{x\cdot\:(1-x)}dx
derivative of f(x)=sqrt(x+5)
derivative\:f(x)=\sqrt{x+5}
taylor sin(2x),pi
taylor\:\sin(2x),π
integral from 0 to pi of x*sin(2x)
\int\:_{0}^{π}x\cdot\:\sin(2x)dx
(dy)/(dx)=(x-2)e^{-2y},y(2)=ln(2)
\frac{dy}{dx}=(x-2)e^{-2y},y(2)=\ln(2)
integral from 0 to pi/3 of sin(3x)
\int\:_{0}^{\frac{π}{3}}\sin(3x)dx
integral from-4 to 4 of sqrt(90)
\int\:_{-4}^{4}\sqrt{90}dt
limit as x approaches 0 of 5/(x^8)
\lim\:_{x\to\:0}(\frac{5}{x^{8}})
(\partial)/(\partial x)(e^{3x}cos(6y))
\frac{\partial\:}{\partial\:x}(e^{3x}\cos(6y))
(dx)/(dt)=2+x/(20)
\frac{dx}{dt}=2+\frac{x}{20}
derivative of y=5x-15
derivative\:y=5x-15
derivative of-3/(16(1+x^{7/4)})
\frac{d}{dx}(-\frac{3}{16(1+x)^{\frac{7}{4}}})
integral of 4e^xsqrt(4+e^x)
\int\:4e^{x}\sqrt{4+e^{x}}dx
derivative of (2x+1^6)
\frac{d}{dx}((2x+1)^{6})
integral from-1 to 2 of (x^2-3x)
\int\:_{-1}^{2}(x^{2}-3x)dx
(dx}{dy}=\frac{x^2y+y^3)/x
\frac{dx}{dy}=\frac{x^{2}y+y^{3}}{x}
(\partial)/(\partial x)(cos^3(x^8y^8))
\frac{\partial\:}{\partial\:x}(\cos^{3}(x^{8}y^{8}))
derivative of 1/(x*ln(x))
\frac{d}{dx}(\frac{1}{x\cdot\:\ln(x)})
limit as x approaches-2+of-6
\lim\:_{x\to\:-2+}(-6)
solvefor f,tan(f)(x)=(sqrt(x)+1)/(sqrt(x^3))
solvefor\:f,\tan(f)(x)=\frac{\sqrt{x}+1}{\sqrt{x^{3}}}
implicit 3x^2+xy+3y^2=7
implicit\:3x^{2}+xy+3y^{2}=7
integral of cos(2x+y)
\int\:\cos(2x+y)dx
integral from 1 to 2 of 8x^3+3x^2
\int\:_{1}^{2}8x^{3}+3x^{2}dx
integral of cos^{(5)}(2x)
\int\:\cos^{(5)}(2x)dx
(\partial)/(\partial x)(1+e^{2x})
\frac{\partial\:}{\partial\:x}(1+e^{2x})
integral from-1 to 3 of (t+2)(t^2-2t+4)
\int\:_{-1}^{3}(t+2)(t^{2}-2t+4)dt
taylor e^{-x},0.25
taylor\:e^{-x},0.25
(\partial)/(\partial x)(x^2+y^2-2x-2y)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}-2x-2y)
derivative of (x^2-4/(x^2))
\frac{d}{dx}(\frac{x^{2}-4}{x^{2}})
tangent of f(x)=e^{4x},\at x= 1/4 ln(5)
tangent\:f(x)=e^{4x},\at\:x=\frac{1}{4}\ln(5)
area f(x)=2sin(x)+sin(2x),y=0,0<= x<= pi
area\:f(x)=2\sin(x)+\sin(2x),y=0,0\le\:x\le\:π
x^'=x-15
x^{\prime\:}=x-15
derivative of 2/((2+x^3))
\frac{d}{dx}(\frac{2}{(2+x)^{3}})
(d^3)/(dx^3)(4/x)
\frac{d^{3}}{dx^{3}}(\frac{4}{x})
(\partial)/(\partial y)(e^{2x}sin(y))
\frac{\partial\:}{\partial\:y}(e^{2x}\sin(y))
derivative of-4+2e^x-3x
derivative\:-4+2e^{x}-3x
integral of xsqrt(x^2+2)
\int\:x\sqrt{x^{2}+2}dx
tangent of f(x)=-x^3+3x^2
tangent\:f(x)=-x^{3}+3x^{2}
derivative of f(x)= 4/((x^2+1)^2)
derivative\:f(x)=\frac{4}{(x^{2}+1)^{2}}
derivative of 6x-9
\frac{d}{dx}(6x-9)
y^{'''}-9y^{''}+20y^'=0
y^{\prime\:\prime\:\prime\:}-9y^{\prime\:\prime\:}+20y^{\prime\:}=0
(\partial)/(\partial x)(((x+y))/(xy-1))
\frac{\partial\:}{\partial\:x}(\frac{(x+y)}{xy-1})
integral from 15 to 30 of 9
\int\:_{15}^{30}9dx
derivative of x/(sqrt(x^2+36))
\frac{d}{dx}(\frac{x}{\sqrt{x^{2}+36}})
integral from-1 to 2 of (9-x^2)-(x+1)
\int\:_{-1}^{2}(9-x^{2})-(x+1)dx
derivative of x^{n+1}
\frac{d}{dx}(x^{n+1})
derivative of ((x-1)/x)
\frac{d}{dx}(\frac{(x-1)}{x})
(\partial)/(\partial x)(x^3-3xy)
\frac{\partial\:}{\partial\:x}(x^{3}-3xy)
(\partial)/(\partial y)(3x+5y-1)
\frac{\partial\:}{\partial\:y}(3x+5y-1)
derivative of ln(x^2sqrt(x^2+1))
\frac{d}{dx}(\ln(x^{2}\sqrt{x^{2}+1}))
(dy}{dx}=\frac{(6xsec(y/x)+y))/x
\frac{dy}{dx}=\frac{(6x\sec(\frac{y}{x})+y)}{x}
taylor cos(x)+1/x , pi/2
taylor\:\cos(x)+\frac{1}{x},\frac{π}{2}
tangent of f(x)=sqrt(x^2+18x+86),\at x=0
tangent\:f(x)=\sqrt{x^{2}+18x+86},\at\:x=0
integral of-1/2 e^{-2x}
\int\:-\frac{1}{2}e^{-2x}dx
integral from 0 to x of 1/(1+t^2)
\int\:_{0}^{x}\frac{1}{1+t^{2}}dt
(\partial)/(\partial x)((xe^{x+2y})(1+2y))
\frac{\partial\:}{\partial\:x}((xe^{x+2y})(1+2y))
integral of (-x^3-x^2-4x+28)/(x^3+4x)
\int\:\frac{-x^{3}-x^{2}-4x+28}{x^{3}+4x}dx
(\partial)/(\partial x)(\sqrt[4]{4x^2+2})
\frac{\partial\:}{\partial\:x}(\sqrt[4]{4x^{2}+2})
integral from 0 to 7 of 8/(9x^2+10x+1)
\int\:_{0}^{7}\frac{8}{9x^{2}+10x+1}dx
(\partial)/(\partial x)(e^{3y}cos(-3x))
\frac{\partial\:}{\partial\:x}(e^{3y}\cos(-3x))
area y=e^x,y=9-e^x,x=-1,x=1
area\:y=e^{x},y=9-e^{x},x=-1,x=1
derivative of (sin(ln(t)))^2
derivative\:(\sin(\ln(t)))^{2}
y^'=4y(1-y/4)
y^{\prime\:}=4y(1-\frac{y}{4})
limit as x approaches 0 of-4/(x^2)
\lim\:_{x\to\:0}(-\frac{4}{x^{2}})
derivative of (x^3-5x^2+1)/(x^2)
derivative\:\frac{x^{3}-5x^{2}+1}{x^{2}}
integral from 0 to 1/2 of 5arcsin(2y)
\int\:_{0}^{\frac{1}{2}}5\arcsin(2y)dy
integral of 1/(x^2sqrt(x^2-100))
\int\:\frac{1}{x^{2}\sqrt{x^{2}-100}}dx
derivative of f(x)=(sec(x))/(8+sec(x))
derivative\:f(x)=\frac{\sec(x)}{8+\sec(x)}
integral of 1/(x^3sqrt(x^2-100))
\int\:\frac{1}{x^{3}\sqrt{x^{2}-100}}dx
derivative of 3x^3e^{-x}
\frac{d}{dx}(3x^{3}e^{-x})
derivative of f(x)=3xe^{2x}
derivative\:f(x)=3xe^{2x}
d/(dt)(1/(sqrt(1+t^2)))
\frac{d}{dt}(\frac{1}{\sqrt{1+t^{2}}})
limit as x approaches 3 of 5^x
\lim\:_{x\to\:3}(5^{x})
limit as x approaches 2-of (x^2)/(4-x^2)
\lim\:_{x\to\:2-}(\frac{x^{2}}{4-x^{2}})
derivative of-4x-(676)/x
derivative\:-4x-\frac{676}{x}
integral of xsqrt(36+x^2)
\int\:x\sqrt{36+x^{2}}dx
integral of x/((x-1)^2)
\int\:\frac{x}{(x-1)^{2}}dx
integral of (1/x-5/(9x^2+1))
\int\:(\frac{1}{x}-\frac{5}{9x^{2}+1})dx
derivative of 3x^2y
\frac{d}{dx}(3x^{2}y)
limit as x approaches 2 of x^3+2x^2-x-4
\lim\:_{x\to\:2}(x^{3}+2x^{2}-x-4)
derivative of (3x^2+5(3x-1)^2)
\frac{d}{dx}((3x^{2}+5)(3x-1)^{2})
derivative of 2x^2e^x
derivative\:2x^{2}e^{x}
derivative of f(x)= 3/(4x^5)
derivative\:f(x)=\frac{3}{4x^{5}}
derivative of 4x^8+3e^{7x}
\frac{d}{dx}(4x^{8}+3e^{7x})
derivative of \sqrt[8]{x}-9/x
\frac{d}{dx}(\sqrt[8]{x}-\frac{9}{x})
limit as x approaches 3 of x^2+x
\lim\:_{x\to\:3}(x^{2}+x)
y=ln(x^2+5)
y=\ln(x^{2}+5)
sum from n=1 to infinity of 1/(4n-2)
\sum\:_{n=1}^{\infty\:}\frac{1}{4n-2}
(\partial)/(\partial x)(x^2+2y^2+3z^2-1)
\frac{\partial\:}{\partial\:x}(x^{2}+2y^{2}+3z^{2}-1)
integral of 7ln(x^2-1)
\int\:7\ln(x^{2}-1)dx
(\partial)/(\partial z)(xe^y+ye^z+ze^x)
\frac{\partial\:}{\partial\:z}(xe^{y}+ye^{z}+ze^{x})
integral of (1-x^2)^{0.5}
\int\:(1-x^{2})^{0.5}dx
tangent of 2/(4-x),\at x=1
tangent\:\frac{2}{4-x},\at\:x=1
integral of sin^2(4x)cos^2(x)4x
\int\:\sin^{2}(4x)\cos^{2}(x)4xdx
(dy)/(dx)=5xe^y,y(0)=0
\frac{dy}{dx}=5xe^{y},y(0)=0
integral of (x^3)/(3-x^4)
\int\:\frac{x^{3}}{3-x^{4}}dx
derivative of 12sqrt(x)tanh(sqrt(x))
\frac{d}{dx}(12\sqrt{x}\tanh(\sqrt{x}))
tangent of y=x^4-5x^3+2,\at x=2
tangent\:y=x^{4}-5x^{3}+2,\at\:x=2
(\partial)/(\partial y)(4-x^2-y^2)
\frac{\partial\:}{\partial\:y}(4-x^{2}-y^{2})
1
..
408
409
410
411
412
..
2459