Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of ln(1+7x)
\frac{d}{dx}(\ln(1+7x))
derivative of x^2sqrt(4x-9)
\frac{d}{dx}(x^{2}\sqrt{4x-9})
integral of-cos(u)+1/3 cos^3(u)
\int\:-\cos(u)+\frac{1}{3}\cos^{3}(u)du
derivative of (3x^2-10)^{-13}
derivative\:(3x^{2}-10)^{-13}
integral of (-3((9x^2)/2)-4x^3)
\int\:(-3(\frac{9x^{2}}{2})-4x^{3})dx
y^'=(e^t)/(3y^2)
y^{\prime\:}=\frac{e^{t}}{3y^{2}}
integral of 30e^{0.5x}
\int\:30e^{0.5x}dx
x^2y^{''}+xy^'+2y=0
x^{2}y^{\prime\:\prime\:}+xy^{\prime\:}+2y=0
integral of 22tan^{21}(x)sec^2(x)
\int\:22\tan^{21}(x)\sec^{2}(x)dx
derivative of 7t^2+sqrt(t^3)
derivative\:7t^{2}+\sqrt{t^{3}}
tangent of f(x)=(1+3x)^9,\at x=0
tangent\:f(x)=(1+3x)^{9},\at\:x=0
derivative of (2x^3-3log_{2}(5-x))
\frac{d}{dx}((2x^{3}-3)\log_{2}(5-x))
tangent of f(x)= 1/(4+3x),\at x=1
tangent\:f(x)=\frac{1}{4+3x},\at\:x=1
(\partial}{\partial v}(\frac{u+v)/3)
\frac{\partial\:}{\partial\:v}(\frac{u+v}{3})
x*(dy)/(dx)-(1+x)y=xy^2
x\cdot\:\frac{dy}{dx}-(1+x)y=xy^{2}
area x^2,0,1
area\:x^{2},0,1
sum from n=0 to infinity of (-1)^nx(x/4)^{2n}
\sum\:_{n=0}^{\infty\:}(-1)^{n}x(\frac{x}{4})^{2n}
derivative of arctan(1+x^2)
\frac{d}{dx}(\arctan(1+x^{2}))
derivative of y=sin(sin(sin(x)))
derivative\:y=\sin(\sin(\sin(x)))
limit as x approaches 5 of xsqrt(29-x^2)
\lim\:_{x\to\:5}(x\sqrt{29-x^{2}})
derivative of e^tsin(3t)
derivative\:e^{t}\sin(3t)
integral of sin^6(2x)cos^3(2x)
\int\:\sin^{6}(2x)\cos^{3}(2x)dx
(\partial)/(\partial x)(xy-z^2+17x^2z)
\frac{\partial\:}{\partial\:x}(xy-z^{2}+17x^{2}z)
tangent of y=-x^2+4x+2,(3,5)
tangent\:y=-x^{2}+4x+2,(3,5)
(\partial)/(\partial x)(x/(y^3))
\frac{\partial\:}{\partial\:x}(\frac{x}{y^{3}})
(\partial)/(\partial x)(4xsin(6x^2y))
\frac{\partial\:}{\partial\:x}(4x\sin(6x^{2}y))
(dy)/(dx)=xy-x
\frac{dy}{dx}=xy-x
y^{''}+2y^'-3y=0
y^{\prime\:\prime\:}+2y^{\prime\:}-3y=0
limit as x approaches a of 1/(sqrt(x))
\lim\:_{x\to\:a}(\frac{1}{\sqrt{x}})
(dy)/(dx)=5y^2
\frac{dy}{dx}=5y^{2}
integral of (2x)/(sqrt(x^2-9))
\int\:\frac{2x}{\sqrt{x^{2}-9}}dx
d/(dt)(-(2cos^2(t)sin(t))/(sin(2t)))
\frac{d}{dt}(-\frac{2\cos^{2}(t)\sin(t)}{\sin(2t)})
integral of 1/(x(y)^2+1)
\int\:\frac{1}{x(y)^{2}+1}dx
limit as x approaches 3 of \sqrt[6]{2-x}
\lim\:_{x\to\:3}(\sqrt[6]{2-x})
integral from 2 to 5 of x^2ln(3x)
\int\:_{2}^{5}x^{2}\ln(3x)dx
x(dy)/(dx)+y=sec(xy)
x\frac{dy}{dx}+y=\sec(xy)
integral of x^7ln(1+x)
\int\:x^{7}\ln(1+x)dx
derivative of 2xe^{x+3}+e^{x+3}x^2
\frac{d}{dx}(2xe^{x+3}+e^{x+3}x^{2})
slope of eln(2x^4+ax^2y^{2+2y^4})
slope\:e\ln(2x^{4}+ax^{2}y^{2+2y^{4}})
derivative of f(x)=sqrt(10x)
derivative\:f(x)=\sqrt{10x}
derivative of (8x^2-x)ln(x)
derivative\:(8x^{2}-x)\ln(x)
sum from n=0 to infinity of ((-1)/3)^{2n}
\sum\:_{n=0}^{\infty\:}(\frac{-1}{3})^{2n}
integral of (23)/(x^3-125)
\int\:\frac{23}{x^{3}-125}dx
derivative of h(x)= 3/(x^2)+5/(x^4)
derivative\:h(x)=\frac{3}{x^{2}}+\frac{5}{x^{4}}
xy^'-2y=7x^2
xy^{\prime\:}-2y=7x^{2}
derivative of (sqrt(9-x^2))/(4x)
derivative\:\frac{\sqrt{9-x^{2}}}{4x}
derivative of f(x)=(x+1)(2x-1)
derivative\:f(x)=(x+1)(2x-1)
integral from 0 to pi/8 of sin^5(4x)
\int\:_{0}^{\frac{π}{8}}\sin^{5}(4x)dx
y^{'''}+y^{''}+3y^'-5y=0
y^{\prime\:\prime\:\prime\:}+y^{\prime\:\prime\:}+3y^{\prime\:}-5y=0
integral of (sin(2x))/(2sin(x))
\int\:\frac{\sin(2x)}{2\sin(x)}dx
integral from 4 to infinity of xe^{-3x}
\int\:_{4}^{\infty\:}xe^{-3x}dx
(dy)/(dx)=2xy^2+3x^2y^2,y(1)=-1
\frac{dy}{dx}=2xy^{2}+3x^{2}y^{2},y(1)=-1
integral of (4x+3)/(sqrt(1-x^2))
\int\:\frac{4x+3}{\sqrt{1-x^{2}}}dx
derivative of sin(4x+7x^4+e^{1-x^2})
\frac{d}{dx}(\sin(4x+7x^{4})+e^{1-x^{2}})
integral of (x^2+24x-9)/(x^3-9x)
\int\:\frac{x^{2}+24x-9}{x^{3}-9x}dx
limit as x approaches pi/2 of-cos(x)
\lim\:_{x\to\:\frac{π}{2}}(-\cos(x))
derivative of y=(6x^2+6x+2)/(sqrt(x))
derivative\:y=\frac{6x^{2}+6x+2}{\sqrt{x}}
derivative of (3x^2/(5x^2+7x))
\frac{d}{dx}(\frac{3x^{2}}{5x^{2}+7x})
derivative of 5cos(x)
derivative\:5\cos(x)
(\partial)/(\partial x)(xln(t))
\frac{\partial\:}{\partial\:x}(x\ln(t))
derivative of e^x-e^{-x}
derivative\:e^{x}-e^{-x}
integral of sin(x)*x
\int\:\sin(x)\cdot\:xdx
derivative of sqrt(cos(e^{x^5sin(x))})
\frac{d}{dx}(\sqrt{\cos(e^{x^{5}\sin(x)})})
derivative of-6/(x^3)
derivative\:-\frac{6}{x^{3}}
integral of sqrt(x)arctan(sqrt(x))
\int\:\sqrt{x}\arctan(\sqrt{x})dx
(\partial)/(\partial x)(x^4+12xy^2+2y^4)
\frac{\partial\:}{\partial\:x}(x^{4}+12xy^{2}+2y^{4})
derivative of y=(2x-9)/(3x+7)
derivative\:y=\frac{2x-9}{3x+7}
integral of (7^x)/(sqrt(1-7^{2x))}
\int\:\frac{7^{x}}{\sqrt{1-7^{2x}}}dx
derivative of e^{-3}
\frac{d}{dx}(e^{-3})
derivative of (1-x^{1/2})
\frac{d}{dx}((1-x)^{\frac{1}{2}})
(\partial)/(\partial x)(cos(x)sin(y))
\frac{\partial\:}{\partial\:x}(\cos(x)\sin(y))
y^{''}-10y^'+61y=0
y^{\prime\:\prime\:}-10y^{\prime\:}+61y=0
inverse oflaplace (56s)/(s^2+196)
inverselaplace\:\frac{56s}{s^{2}+196}
(dy)/(dx)=-2xtan(y),y(0)= pi/2
\frac{dy}{dx}=-2x\tan(y),y(0)=\frac{π}{2}
(dx)/(dt)=x(1-0.0004x)
\frac{dx}{dt}=x(1-0.0004x)
integral from 1 to 2 of 9(ln(x))/(x^2)
\int\:_{1}^{2}9\frac{\ln(x)}{x^{2}}dx
integral of 1/(sqrt(x(x+1)))
\int\:\frac{1}{\sqrt{x(x+1)}}dx
tangent of f(x)=sqrt(x-1),(10,3)
tangent\:f(x)=\sqrt{x-1},(10,3)
integral from 0 to 3 of sqrt(4x+5)
\int\:_{0}^{3}\sqrt{4x+5}dx
area x=-3,x=-1,y=x^3+8,y=0
area\:x=-3,x=-1,y=x^{3}+8,y=0
(\partial)/(\partial x)(y^2e^{-x})
\frac{\partial\:}{\partial\:x}(y^{2}e^{-x})
(\partial)/(\partial x)((Ax^c+By^c)^{1/c})
\frac{\partial\:}{\partial\:x}((Ax^{c}+By^{c})^{\frac{1}{c}})
(\partial)/(\partial x)(sqrt((18)/(xy)))
\frac{\partial\:}{\partial\:x}(\sqrt{\frac{18}{xy}})
integral from 1 to 6 of kx
\int\:_{1}^{6}kxdx
limit as x approaches-2 of (x^2-5)/(2-x)
\lim\:_{x\to\:-2}(\frac{x^{2}-5}{2-x})
derivative of-2x-2
\frac{d}{dx}(-2x-2)
integral from 0 to 1 of 6x
\int\:_{0}^{1}6xdx
area y=e^x,y=x^2-1,x=-1,x=1
area\:y=e^{x},y=x^{2}-1,x=-1,x=1
sum from n=1 to infinity of ne^{6n}
\sum\:_{n=1}^{\infty\:}ne^{6n}
(dy)/(dt)-(3/t)*y=2t^3e^{2t},y(1)=0
\frac{dy}{dt}-(\frac{3}{t})\cdot\:y=2t^{3}e^{2t},y(1)=0
derivative of 7/(sqrt(x))
derivative\:\frac{7}{\sqrt{x}}
y^{''}+y=(x^2+x)sin(x)
y^{\prime\:\prime\:}+y=(x^{2}+x)\sin(x)
derivative of 3sec(x)-7x
derivative\:3\sec(x)-7x
limit as x approaches 8 of (2+8)/(2(8))
\lim\:_{x\to\:8}(\frac{2+8}{2(8)})
sum from n=1 to infinity of 1/(n+2)
\sum\:_{n=1}^{\infty\:}\frac{1}{n+2}
area x^2+y^2=6,x=y^2,y=0
area\:x^{2}+y^{2}=6,x=y^{2},y=0
implicit (dy)/(dx),x^3-3axy+y^3=0
implicit\:\frac{dy}{dx},x^{3}-3axy+y^{3}=0
limit as x approaches pi of sin(7x)
\lim\:_{x\to\:π}(\sin(7x))
integral from-2 to 2 of (3u+1)^2
\int\:_{-2}^{2}(3u+1)^{2}du
derivative of (x^2+2/(x^3+1))
\frac{d}{dx}(\frac{x^{2}+2}{x^{3}+1})
1
..
990
991
992
993
994
..
2459