Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme f(x)=(x^2)/(4x+4)
extreme\:f(x)=\frac{x^{2}}{4x+4}
domain of f(x)=x^2+10
domain\:f(x)=x^{2}+10
parallel y=-7x+21,(9,-1)
parallel\:y=-7x+21,(9,-1)
inverse of f(x)=6x+5
inverse\:f(x)=6x+5
inverse of x^3-64
inverse\:x^{3}-64
inverse of f(x)=log_{9}(x)
inverse\:f(x)=\log_{9}(x)
domain of f(x)=0
domain\:f(x)=0
midpoint (9,-9),(5,-1)
midpoint\:(9,-9),(5,-1)
y=-3x+4
y=-3x+4
inverse of f(x)=sqrt(6-\sqrt{3x)}
inverse\:f(x)=\sqrt{6-\sqrt{3x}}
inflection f(x)=x^3+x^2-3
inflection\:f(x)=x^{3}+x^{2}-3
critical 8x^3-2x
critical\:8x^{3}-2x
extreme f(x)=(x-4)^5
extreme\:f(x)=(x-4)^{5}
domain of f(x)= 1/10 x-1/4
domain\:f(x)=\frac{1}{10}x-\frac{1}{4}
asymptotes of (2x-2)/(x+2)
asymptotes\:\frac{2x-2}{x+2}
domain of g(x)=x^2
domain\:g(x)=x^{2}
domain of f(x)=(x+5)/(2-x)
domain\:f(x)=\frac{x+5}{2-x}
inverse of ((6x-24))/(2x-5)
inverse\:\frac{(6x-24)}{2x-5}
asymptotes of y=(x^2+1)/(3x-2x^2)
asymptotes\:y=\frac{x^{2}+1}{3x-2x^{2}}
inverse of f(x)=(1-41x)/x
inverse\:f(x)=\frac{1-41x}{x}
midpoint (10,-7),(-4,1)
midpoint\:(10,-7),(-4,1)
periodicity of 2sin(2x)+3
periodicity\:2\sin(2x)+3
line (4,-23),(-1,7)
line\:(4,-23),(-1,7)
extreme f(x)=-1/7 x^2-2x+7
extreme\:f(x)=-\frac{1}{7}x^{2}-2x+7
extreme f(x)=(x^2+4)/(4x)
extreme\:f(x)=\frac{x^{2}+4}{4x}
domain of f(x)=-6x^2
domain\:f(x)=-6x^{2}
domain of (sqrt(x+3))/(x-9)
domain\:\frac{\sqrt{x+3}}{x-9}
asymptotes of f(x)= 1/x+2
asymptotes\:f(x)=\frac{1}{x}+2
asymptotes of y= x/(x^2-4)
asymptotes\:y=\frac{x}{x^{2}-4}
domain of (x^2)/(x^2-9)
domain\:\frac{x^{2}}{x^{2}-9}
domain of f(x)=sqrt(4x-16)
domain\:f(x)=\sqrt{4x-16}
symmetry x^2-8x
symmetry\:x^{2}-8x
symmetry y=-4(x-2)^2+16
symmetry\:y=-4(x-2)^{2}+16
domain of sin(3(sin(3x)))
domain\:\sin(3(\sin(3x)))
asymptotes of f(x)=(x^2-4)/(x-2)
asymptotes\:f(x)=\frac{x^{2}-4}{x-2}
parity f(x)=(2x+3x^3-3)/(-2x^3+4x^2+1)
parity\:f(x)=\frac{2x+3x^{3}-3}{-2x^{3}+4x^{2}+1}
domain of e^x-e^{-x}
domain\:e^{x}-e^{-x}
inflection f(x)=x^4-4x^3+5
inflection\:f(x)=x^{4}-4x^{3}+5
asymptotes of (-3x+3)/(5x-5)
asymptotes\:\frac{-3x+3}{5x-5}
inverse of f(x)=2x-7
inverse\:f(x)=2x-7
inverse of f(x)=2.4sqrt(x-0.3)+1.2
inverse\:f(x)=2.4\sqrt{x-0.3}+1.2
range of f(x)=x^4-4x^3+3x^2
range\:f(x)=x^{4}-4x^{3}+3x^{2}
asymptotes of sqrt(9x^2-6x)-3x
asymptotes\:\sqrt{9x^{2}-6x}-3x
monotone f(x)=3^{x-2}+1
monotone\:f(x)=3^{x-2}+1
asymptotes of (7x^2+8x)/(8x^2-4)
asymptotes\:\frac{7x^{2}+8x}{8x^{2}-4}
domain of f(x)= 1/(x+5)
domain\:f(x)=\frac{1}{x+5}
domain of f(x)=((x-2)(x+9))/(x^3)
domain\:f(x)=\frac{(x-2)(x+9)}{x^{3}}
inverse of 6-x
inverse\:6-x
domain of f(x)=(-7)/((3+t)^2)
domain\:f(x)=\frac{-7}{(3+t)^{2}}
inverse of f(x)=log_{6}(x)
inverse\:f(x)=\log_{6}(x)
critical f(x)=xe^{-8x}
critical\:f(x)=xe^{-8x}
domain of 2(sqrt(x-5))^2+11
domain\:2(\sqrt{x-5})^{2}+11
inverse of f(x)=(5-10x)^{9/2}
inverse\:f(x)=(5-10x)^{\frac{9}{2}}
inverse of f(x)=5x^2+1
inverse\:f(x)=5x^{2}+1
domain of x^3+3
domain\:x^{3}+3
domain of 3x-7
domain\:3x-7
parallel 5x+6y=12
parallel\:5x+6y=12
midpoint (-2,-2),(2,-8)
midpoint\:(-2,-2),(2,-8)
inverse of f(x)=6log_{5}(2x-6)
inverse\:f(x)=6\log_{5}(2x-6)
monotone f(x)=(e^x)/(4+e^x)
monotone\:f(x)=\frac{e^{x}}{4+e^{x}}
perpendicular y=4x-5
perpendicular\:y=4x-5
parity f(x)=3x^4-2x^3
parity\:f(x)=3x^{4}-2x^{3}
asymptotes of f(x)=(x+2)/(2x+6)
asymptotes\:f(x)=\frac{x+2}{2x+6}
domain of f(x)=sqrt(30-(x^2-x))
domain\:f(x)=\sqrt{30-(x^{2}-x)}
intercepts of f(x)=x^2+3x+3
intercepts\:f(x)=x^{2}+3x+3
asymptotes of (3x+5)/(5x^2+55x+120)
asymptotes\:\frac{3x+5}{5x^{2}+55x+120}
asymptotes of f(x)=(x^2-8x-20)/(15x-27)
asymptotes\:f(x)=\frac{x^{2}-8x-20}{15x-27}
domain of 5sqrt(x-2)
domain\:5\sqrt{x-2}
line (1,4),(2,4)
line\:(1,4),(2,4)
range of f(x)=3(x-6)^2
range\:f(x)=3(x-6)^{2}
range of f(x)=(x^2+6)/(x+3)
range\:f(x)=\frac{x^{2}+6}{x+3}
domain of f(x)=x^2+5x+1
domain\:f(x)=x^{2}+5x+1
inverse of (2x+1)/(x^2-1)
inverse\:\frac{2x+1}{x^{2}-1}
inverse of f(x)=3x^4
inverse\:f(x)=3x^{4}
amplitude of-3sin(2pix+2)
amplitude\:-3\sin(2πx+2)
shift y=-tan(x-pi/3)
shift\:y=-\tan(x-\frac{π}{3})
slope of 5x-y=9
slope\:5x-y=9
domain of f(x)= 1/x+2ln(x+3)
domain\:f(x)=\frac{1}{x}+2\ln(x+3)
extreme f(x)= x/(5+x^2)
extreme\:f(x)=\frac{x}{5+x^{2}}
parallel 9x+4y=-3
parallel\:9x+4y=-3
monotone x/(x^2-4)
monotone\:\frac{x}{x^{2}-4}
intercepts of f(x)=6tan(0.2x)
intercepts\:f(x)=6\tan(0.2x)
inverse of (3x)/(7x-1)
inverse\:\frac{3x}{7x-1}
intercepts of 4sin^2(x)
intercepts\:4\sin^{2}(x)
inverse of f(x)=9x^2-2
inverse\:f(x)=9x^{2}-2
perpendicular 3x+5y=15,(3,2)
perpendicular\:3x+5y=15,(3,2)
slope of-1.5
slope\:-1.5
inverse of f(x)=(5x+1)^3
inverse\:f(x)=(5x+1)^{3}
inflection f(x)= 1/10 x^5-5x^3
inflection\:f(x)=\frac{1}{10}x^{5}-5x^{3}
inverse of y=(49)/(x^2)
inverse\:y=\frac{49}{x^{2}}
symmetry x^2-2x-15
symmetry\:x^{2}-2x-15
slope of 4x-5y+15
slope\:4x-5y+15
slope ofintercept 4x+5y=15
slopeintercept\:4x+5y=15
inverse of f(x)=((5x-2))/((3x+6))
inverse\:f(x)=\frac{(5x-2)}{(3x+6)}
asymptotes of f(x)=(3x^3-3)/(x-x^2)
asymptotes\:f(x)=\frac{3x^{3}-3}{x-x^{2}}
domain of f(x)=(-3)/(|x+2|)
domain\:f(x)=\frac{-3}{\left|x+2\right|}
parity f(x)=((3*x^3-2*x^2+7))/((x^3-x-2))
parity\:f(x)=\frac{(3\cdot\:x^{3}-2\cdot\:x^{2}+7)}{(x^{3}-x-2)}
perpendicular 3x+3y=72
perpendicular\:3x+3y=72
slope of y=-1+3x
slope\:y=-1+3x
periodicity of 2tan((pix)/2)
periodicity\:2\tan(\frac{πx}{2})
1
..
207
208
209
210
211
..
1324