Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of (x^2+3x)/(x^2-x)
range\:\frac{x^{2}+3x}{x^{2}-x}
inflection 7/(3x^2)
inflection\:\frac{7}{3x^{2}}
inverse of f(x)=(x+1)/9
inverse\:f(x)=\frac{x+1}{9}
asymptotes of f(x)=(x^2-8x+16)/(x^3-6x^2)
asymptotes\:f(x)=\frac{x^{2}-8x+16}{x^{3}-6x^{2}}
inverse of log_{4}(x+2)+1
inverse\:\log_{4}(x+2)+1
domain of f(x)=(sqrt(x-4))/(sqrt(x-6))
domain\:f(x)=\frac{\sqrt{x-4}}{\sqrt{x-6}}
range of 1/(x-6)
range\:\frac{1}{x-6}
domain of f(x)=2x^3-5
domain\:f(x)=2x^{3}-5
amplitude of f(x)=2+4sin(3x+pi/2)
amplitude\:f(x)=2+4\sin(3x+\frac{π}{2})
domain of f(x)= 7/(x^2-49)
domain\:f(x)=\frac{7}{x^{2}-49}
domain of 2/(x^2+4x+3)
domain\:\frac{2}{x^{2}+4x+3}
inverse of (x+1)/(x+6)
inverse\:\frac{x+1}{x+6}
range of f(x)=sin(2x)
range\:f(x)=\sin(2x)
inverse of f(x)=5sqrt(x+9)+1
inverse\:f(x)=5\sqrt{x+9}+1
inverse of f(x)= 1/9 (2x(x+1)-x-10)+1
inverse\:f(x)=\frac{1}{9}(2x(x+1)-x-10)+1
inverse of f(x)=5x^5-9
inverse\:f(x)=5x^{5}-9
asymptotes of f(x)=((1+e^{-x}))/(5e^x)
asymptotes\:f(x)=\frac{(1+e^{-x})}{5e^{x}}
domain of f(x)= 1/(x^2-5)
domain\:f(x)=\frac{1}{x^{2}-5}
domain of f(x)=5-2x
domain\:f(x)=5-2x
parallel y= 5/4 x-7
parallel\:y=\frac{5}{4}x-7
asymptotes of y=(3x)/(7x+14)
asymptotes\:y=\frac{3x}{7x+14}
frequency sin(2x)
frequency\:\sin(2x)
domain of (x-3)/(x-2)
domain\:\frac{x-3}{x-2}
slope of 8y-4x=-56
slope\:8y-4x=-56
f(x)=cos^4(x)
f(x)=\cos^{4}(x)
slope of y= 5/9 x-4
slope\:y=\frac{5}{9}x-4
critical ln(1/(1+e^{-x)})
critical\:\ln(\frac{1}{1+e^{-x}})
range of f(x)=-x^2
range\:f(x)=-x^{2}
range of sqrt(12-x^2)
range\:\sqrt{12-x^{2}}
domain of f(x)=1-e^{-x}*x^2
domain\:f(x)=1-e^{-x}\cdot\:x^{2}
inverse of f(x)=(-(1/5)x+3)/5
inverse\:f(x)=\frac{-(\frac{1}{5})x+3}{5}
intercepts of x^2+sqrt(x)
intercepts\:x^{2}+\sqrt{x}
symmetry y=-4x^2+0x+4
symmetry\:y=-4x^{2}+0x+4
symmetry (x^2+x+1)/x
symmetry\:\frac{x^{2}+x+1}{x}
domain of f(x)=sqrt(-x^2+5x-4)
domain\:f(x)=\sqrt{-x^{2}+5x-4}
domain of (x-2)/(2x^2)
domain\:\frac{x-2}{2x^{2}}
domain of 3x+6
domain\:3x+6
asymptotes of f(x)=(2x-3)/(12x^2+5x-3)
asymptotes\:f(x)=\frac{2x-3}{12x^{2}+5x-3}
parity (x^2)/(sin^2(6x))
parity\:\frac{x^{2}}{\sin^{2}(6x)}
y=x^2-9
y=x^{2}-9
domain of |3x-5|
domain\:\left|3x-5\right|
domain of f(x)=(3x-1)/(x^2+16)
domain\:f(x)=\frac{3x-1}{x^{2}+16}
extreme f(x)=4x^3-5x^2-4x
extreme\:f(x)=4x^{3}-5x^{2}-4x
asymptotes of (x^2-1)/(x^2-4)
asymptotes\:\frac{x^{2}-1}{x^{2}-4}
asymptotes of f(x)=(x^2-16)/(x(x-4))
asymptotes\:f(x)=\frac{x^{2}-16}{x(x-4)}
inverse of f(x)=(x-2)^3+1
inverse\:f(x)=(x-2)^{3}+1
f(y)=y^2
f(y)=y^{2}
inverse of f(x)=\sqrt[3]{x+3}-2
inverse\:f(x)=\sqrt[3]{x+3}-2
inverse of-16(x+7)^2-3
inverse\:-16(x+7)^{2}-3
asymptotes of (x^2-4x+6)/(x+4)
asymptotes\:\frac{x^{2}-4x+6}{x+4}
domain of-1/4 (x+3)^2-5
domain\:-\frac{1}{4}(x+3)^{2}-5
domain of f(x)=(ln(1+|x+3|))/(ln(x))
domain\:f(x)=\frac{\ln(1+\left|x+3\right|)}{\ln(x)}
distance (-4,2),(6,4)
distance\:(-4,2),(6,4)
inverse of y= 8/(x^2-6x+8)
inverse\:y=\frac{8}{x^{2}-6x+8}
domain of f(x)= 2/(sqrt(2x-5))
domain\:f(x)=\frac{2}{\sqrt{2x-5}}
line (-4,3),(-2,1)
line\:(-4,3),(-2,1)
inverse of f(x)=\sqrt[4]{x}-3
inverse\:f(x)=\sqrt[4]{x}-3
range of f(x)=(3x-16)/(x-5)
range\:f(x)=\frac{3x-16}{x-5}
asymptotes of f(x)=(x^2-3)/(2x^2-18)
asymptotes\:f(x)=\frac{x^{2}-3}{2x^{2}-18}
range of (3-4x)/(3x)
range\:\frac{3-4x}{3x}
inverse of 2/(3+x)
inverse\:\frac{2}{3+x}
extreme x^3+6x^2
extreme\:x^{3}+6x^{2}
range of f(x)=6+sqrt(-x)
range\:f(x)=6+\sqrt{-x}
asymptotes of f(x)=(-3x)/(x-2)
asymptotes\:f(x)=\frac{-3x}{x-2}
inverse of x^{1/2}
inverse\:x^{\frac{1}{2}}
inverse of f(x)=\sqrt[5]{4x+2}
inverse\:f(x)=\sqrt[5]{4x+2}
inverse of f(x)=x^2-12x
inverse\:f(x)=x^{2}-12x
distance (0,3),(4,-3)
distance\:(0,3),(4,-3)
critical f(x)=20x^3+60x^2-80
critical\:f(x)=20x^{3}+60x^{2}-80
intercepts of-2x^2-24x-54
intercepts\:-2x^{2}-24x-54
f(x)=4x^2
f(x)=4x^{2}
intercepts of f(x)=2(x-2)^2-9
intercepts\:f(x)=2(x-2)^{2}-9
domain of f(x)=sqrt(1-5x)+2
domain\:f(x)=\sqrt{1-5x}+2
slope of 5y=2x
slope\:5y=2x
intercepts of (x^2)/(x^2-16)
intercepts\:\frac{x^{2}}{x^{2}-16}
domain of f(x)=4x+5
domain\:f(x)=4x+5
parity f(x)=x-3
parity\:f(x)=x-3
inverse of f(x)=((3x+1))/(x-2)
inverse\:f(x)=\frac{(3x+1)}{x-2}
asymptotes of f(x)=(4x^2-4x)/(x^2+x-12)
asymptotes\:f(x)=\frac{4x^{2}-4x}{x^{2}+x-12}
inverse of f(x)=((3^{x-3})/2)^{1/3}
inverse\:f(x)=(\frac{3^{x-3}}{2})^{\frac{1}{3}}
inverse of log_{2}(x-1)
inverse\:\log_{2}(x-1)
inverse of f(x)=sqrt(3x+15)
inverse\:f(x)=\sqrt{3x+15}
amplitude of sin(2x-2pi)
amplitude\:\sin(2x-2π)
extreme f(x)=3+x^2
extreme\:f(x)=3+x^{2}
inverse of 7/x
inverse\:\frac{7}{x}
inverse of f(x)=e^x+2e^{2x}
inverse\:f(x)=e^{x}+2e^{2x}
periodicity of f(x)=1+cos(3x+pi/2)
periodicity\:f(x)=1+\cos(3x+\frac{π}{2})
inverse of f(x)=8x-9
inverse\:f(x)=8x-9
inverse of f(x)=5x^4
inverse\:f(x)=5x^{4}
inverse of f(x)=10\sqrt[4]{x}+9
inverse\:f(x)=10\sqrt[4]{x}+9
intercepts of f(x)=5x^2+4y=20
intercepts\:f(x)=5x^{2}+4y=20
periodicity of f(x)=csc((3pi)/4 x)
periodicity\:f(x)=\csc(\frac{3π}{4}x)
simplify (8.5)(3.7)
simplify\:(8.5)(3.7)
domain of f(x)=-16x^2+48x+160
domain\:f(x)=-16x^{2}+48x+160
domain of (x^2-16)/(4x^2)
domain\:\frac{x^{2}-16}{4x^{2}}
domain of y=(x+1)/(x-3)
domain\:y=\frac{x+1}{x-3}
asymptotes of f(x)=(x^2-3x)/(x^2-2x-8)
asymptotes\:f(x)=\frac{x^{2}-3x}{x^{2}-2x-8}
domain of x^2ln(x)
domain\:x^{2}\ln(x)
domain of e^x+2
domain\:e^{x}+2
asymptotes of log_{10}(x)
asymptotes\:\log_{10}(x)
1
..
284
285
286
287
288
..
1324