Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of x+sqrt(x)
inverse\:x+\sqrt{x}
asymptotes of f(x)=4x^3+5x^2
asymptotes\:f(x)=4x^{3}+5x^{2}
midpoint (-2,4),(3,-2)
midpoint\:(-2,4),(3,-2)
parity f(x)=sin(pix)
parity\:f(x)=\sin(πx)
critical f(x)=x^3+27x
critical\:f(x)=x^{3}+27x
domain of sqrt(-3+x)
domain\:\sqrt{-3+x}
inverse of f(x)=sqrt(x+1)-5
inverse\:f(x)=\sqrt{x+1}-5
extreme f(x)=3x^{2/3}-2x
extreme\:f(x)=3x^{\frac{2}{3}}-2x
inverse of (e^x)/(1+8e^x)
inverse\:\frac{e^{x}}{1+8e^{x}}
critical x^4-5x^3+x^2+21x-18
critical\:x^{4}-5x^{3}+x^{2}+21x-18
asymptotes of f(x)= 1/(x-3)
asymptotes\:f(x)=\frac{1}{x-3}
intercepts of f(x)=3x^2-6x-1
intercepts\:f(x)=3x^{2}-6x-1
line m=0,(-4,2)
line\:m=0,(-4,2)
parity f(x)=x^4-4x^2
parity\:f(x)=x^{4}-4x^{2}
range of f(x)=-e^x
range\:f(x)=-e^{x}
critical f(x)=(x^2)/(x-6)
critical\:f(x)=\frac{x^{2}}{x-6}
range of f(x)=-x^3+6x+3
range\:f(x)=-x^{3}+6x+3
asymptotes of f(x)=(x^2-x-6)/(x^2+x-2)
asymptotes\:f(x)=\frac{x^{2}-x-6}{x^{2}+x-2}
range of (3x+8)/(2x-3)
range\:\frac{3x+8}{2x-3}
asymptotes of f(x)=(x+5)/(x^2)
asymptotes\:f(x)=\frac{x+5}{x^{2}}
asymptotes of f(x)=((8-2x))/(x+3)
asymptotes\:f(x)=\frac{(8-2x)}{x+3}
inverse of f(x)= x/(2x+5)
inverse\:f(x)=\frac{x}{2x+5}
inverse of f(x)=sqrt(x+10)
inverse\:f(x)=\sqrt{x+10}
inverse of \sqrt[4]{2x-6}
inverse\:\sqrt[4]{2x-6}
line (7,0),(-2,6)
line\:(7,0),(-2,6)
inverse of f(x)=1650(1.022)^x
inverse\:f(x)=1650(1.022)^{x}
inverse of f(x)=-5-4/3 x
inverse\:f(x)=-5-\frac{4}{3}x
inverse of f(x)=sqrt(x-1)+3
inverse\:f(x)=\sqrt{x-1}+3
inverse of f(x)=x^2+8
inverse\:f(x)=x^{2}+8
domain of f(x)=-3x+3
domain\:f(x)=-3x+3
domain of f(x)=5(5x-1)-1
domain\:f(x)=5(5x-1)-1
intercepts of x^2+2x-2
intercepts\:x^{2}+2x-2
inverse of f(x)=(sqrt(x^2-1))/x
inverse\:f(x)=\frac{\sqrt{x^{2}-1}}{x}
domain of f(x)=(sqrt(x-2))/(x-3)
domain\:f(x)=\frac{\sqrt{x-2}}{x-3}
extreme f(x)=(x^2-36)^{1/3}
extreme\:f(x)=(x^{2}-36)^{\frac{1}{3}}
intercepts of f(x)=460x-11040
intercepts\:f(x)=460x-11040
extreme f(x)=4x^3-3x^4
extreme\:f(x)=4x^{3}-3x^{4}
domain of 3-x^2
domain\:3-x^{2}
y=2x-6
y=2x-6
inverse of \sqrt[3]{x^5-2}
inverse\:\sqrt[3]{x^{5}-2}
inflection 1+1/x-2/(x^3)
inflection\:1+\frac{1}{x}-\frac{2}{x^{3}}
intercepts of x^3-23.47x^2+223.6
intercepts\:x^{3}-23.47x^{2}+223.6
asymptotes of r(x)=(2x-3)/(x^2+x+1)
asymptotes\:r(x)=\frac{2x-3}{x^{2}+x+1}
asymptotes of (x^2+10x+24)/(x-6)
asymptotes\:\frac{x^{2}+10x+24}{x-6}
range of 2cos(x)
range\:2\cos(x)
domain of 9/4 x-5
domain\:\frac{9}{4}x-5
asymptotes of f(x)=2(4/5)^x
asymptotes\:f(x)=2(\frac{4}{5})^{x}
midpoint (3,6),(-4,-1)
midpoint\:(3,6),(-4,-1)
inverse of 3x+10
inverse\:3x+10
domain of (2x+7)/(x-8)
domain\:\frac{2x+7}{x-8}
asymptotes of f(x)=(2x^2)/(x^2-8x+16)
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}-8x+16}
asymptotes of f(x)=(x^2-3x-5)/(x+2)
asymptotes\:f(x)=\frac{x^{2}-3x-5}{x+2}
inverse of 1/(s+2)
inverse\:\frac{1}{s+2}
slope ofintercept (4.9)5x+y=6
slopeintercept\:(4.9)5x+y=6
parity sin(x)+cos(x)
parity\:\sin(x)+\cos(x)
extreme f(x)=x^4-7x^2+8
extreme\:f(x)=x^{4}-7x^{2}+8
slope ofintercept y-3= 5/3 (x-6)
slopeintercept\:y-3=\frac{5}{3}(x-6)
domain of f(x)= 6/(sqrt(16-x^2))
domain\:f(x)=\frac{6}{\sqrt{16-x^{2}}}
extreme f(x)=8x^3-6x+7
extreme\:f(x)=8x^{3}-6x+7
domain of f(x)=-(x+1)(x-2)(x-3)
domain\:f(x)=-(x+1)(x-2)(x-3)
inverse of f(x)=7x^3-3
inverse\:f(x)=7x^{3}-3
line (7,6),(5,3)
line\:(7,6),(5,3)
asymptotes of f(x)=(x^2+x-6)/(x^3-1)
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{3}-1}
domain of f(x)=sqrt(-x-7)
domain\:f(x)=\sqrt{-x-7}
intercepts of f(x)=6x^4-x^3-25x^2+4x+4
intercepts\:f(x)=6x^{4}-x^{3}-25x^{2}+4x+4
asymptotes of (x^2+4)/x
asymptotes\:\frac{x^{2}+4}{x}
domain of f(x)=(2x^2+10x+12)/(x^2+3x+2)
domain\:f(x)=\frac{2x^{2}+10x+12}{x^{2}+3x+2}
asymptotes of f(x)=(e^x)/(3+e^x)
asymptotes\:f(x)=\frac{e^{x}}{3+e^{x}}
intercepts of f(x)=(x-2)/(x^2-2x-3)
intercepts\:f(x)=\frac{x-2}{x^{2}-2x-3}
intercepts of ln|x|
intercepts\:\ln\left|x\right|
slope ofintercept 4x+2y=-12
slopeintercept\:4x+2y=-12
inverse of f(x)= 1/5 x^3-2
inverse\:f(x)=\frac{1}{5}x^{3}-2
inverse of f(x)=-3*2^x+5
inverse\:f(x)=-3\cdot\:2^{x}+5
domain of f(x)=-sqrt(x+1)
domain\:f(x)=-\sqrt{x+1}
inverse of f(x)=e^{4x-5}
inverse\:f(x)=e^{4x-5}
perpendicular Y(x)=3x+9,(-2,3)
perpendicular\:Y(x)=3x+9,(-2,3)
inverse of f(x)=8x-2
inverse\:f(x)=8x-2
domain of f(x)=9x-7
domain\:f(x)=9x-7
asymptotes of f(x)=(x^2-25)/(x-5)
asymptotes\:f(x)=\frac{x^{2}-25}{x-5}
slope of-1/4 (9-2)
slope\:-\frac{1}{4}(9-2)
midpoint (-2,-3),(-3,1)
midpoint\:(-2,-3),(-3,1)
extreme f(x)=-12x^2+156x
extreme\:f(x)=-12x^{2}+156x
asymptotes of f(x)= 2/(x+1)
asymptotes\:f(x)=\frac{2}{x+1}
periodicity of y=sin(6x)
periodicity\:y=\sin(6x)
inverse of f(x)=(2x+9)/(2x-7)
inverse\:f(x)=\frac{2x+9}{2x-7}
inverse of f(x)=((x+5))/(x-6)
inverse\:f(x)=\frac{(x+5)}{x-6}
domain of y=e^x
domain\:y=e^{x}
domain of-(2x)/((x+1)^2(x-1)^2)
domain\:-\frac{2x}{(x+1)^{2}(x-1)^{2}}
inflection 18x^4-108x^2
inflection\:18x^{4}-108x^{2}
slope of-6x-2y=7
slope\:-6x-2y=7
domain of f(x)=-1
domain\:f(x)=-1
domain of f(x)= x/(x^2+64)
domain\:f(x)=\frac{x}{x^{2}+64}
inverse of g(x)=x^2+4
inverse\:g(x)=x^{2}+4
inverse of f(x)= x/(x-1)
inverse\:f(x)=\frac{x}{x-1}
domain of f(x)=sqrt(x^2-5x+4)
domain\:f(x)=\sqrt{x^{2}-5x+4}
asymptotes of f(x)=(3x-8)/(2x+1)
asymptotes\:f(x)=\frac{3x-8}{2x+1}
f(x)=4x^2+12x+3
f(x)=4x^{2}+12x+3
inverse of f(x)=2x^2-4
inverse\:f(x)=2x^{2}-4
perpendicular 2x+y=4,(1,2)
perpendicular\:2x+y=4,(1,2)
domain of 2/(x-2)
domain\:\frac{2}{x-2}
1
..
321
322
323
324
325
..
1324