Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=(x^2+4x-3)/(x^4-5x^2+4)
domain\:f(x)=\frac{x^{2}+4x-3}{x^{4}-5x^{2}+4}
domain of f(x)=(9x)/(x^2-1)
domain\:f(x)=\frac{9x}{x^{2}-1}
range of (13-x)^{1/6}
range\:(13-x)^{\frac{1}{6}}
line (1,4),(3,6)
line\:(1,4),(3,6)
domain of f(x)=x-4
domain\:f(x)=x-4
inverse of (2x+3)/(x-1)
inverse\:\frac{2x+3}{x-1}
inverse of sqrt(x-6)
inverse\:\sqrt{x-6}
inverse of y= 1/3 x-1
inverse\:y=\frac{1}{3}x-1
intercepts of f(x)=x^4-8x^3-16x+5
intercepts\:f(x)=x^{4}-8x^{3}-16x+5
domain of (4t^2-7)/(9t+27)
domain\:\frac{4t^{2}-7}{9t+27}
extreme f(x)=-x^2-6x-3
extreme\:f(x)=-x^{2}-6x-3
asymptotes of (1-4x)/(1+7x)
asymptotes\:\frac{1-4x}{1+7x}
domain of e^{1/x}
domain\:e^{\frac{1}{x}}
simplify (-3.2)(5.5)
simplify\:(-3.2)(5.5)
critical f(x)=4x^2-e^x
critical\:f(x)=4x^{2}-e^{x}
range of sqrt(7-3x)
range\:\sqrt{7-3x}
simplify (1.7)(9)
simplify\:(1.7)(9)
midpoint (8,13),(6,-1)
midpoint\:(8,13),(6,-1)
domain of h(x)=sqrt(x-9)
domain\:h(x)=\sqrt{x-9}
critical f(x)=5x^4-10x^2+8
critical\:f(x)=5x^{4}-10x^{2}+8
domain of f(x)=x^2-7x-30
domain\:f(x)=x^{2}-7x-30
parity f(x)=tan(e^t)+e^{tan(t)}
parity\:f(x)=\tan(e^{t})+e^{\tan(t)}
parallel 7x-12y=-32
parallel\:7x-12y=-32
domain of 2/(x+1)*x/(x+1)
domain\:\frac{2}{x+1}\cdot\:\frac{x}{x+1}
inverse of f(x)= 5/11 x+10
inverse\:f(x)=\frac{5}{11}x+10
domain of sqrt(x^2+5x+6)
domain\:\sqrt{x^{2}+5x+6}
intercepts of 4x^2-4x+21
intercepts\:4x^{2}-4x+21
range of \sqrt[3]{x+7}
range\:\sqrt[3]{x+7}
line (-2,3),(2,1)
line\:(-2,3),(2,1)
extreme f(x)=x^4-4x^3+1
extreme\:f(x)=x^{4}-4x^{3}+1
inverse of f(x)= 1/64 x^3
inverse\:f(x)=\frac{1}{64}x^{3}
inflection x^3+2x+4
inflection\:x^{3}+2x+4
domain of f(x)=sin(e^x-1)
domain\:f(x)=\sin(e^{x}-1)
intercepts of f(x)=8log_{6}(6x+8)+24
intercepts\:f(x)=8\log_{6}(6x+8)+24
range of 1/(x+5)
range\:\frac{1}{x+5}
range of (x-4)/(x+2)
range\:\frac{x-4}{x+2}
inverse of f(x)=(x+6)^2
inverse\:f(x)=(x+6)^{2}
inverse of f(x)=log_{2}(x)-1
inverse\:f(x)=\log_{2}(x)-1
domain of f(x)= 4/(\sqrt[3]{1+x)}
domain\:f(x)=\frac{4}{\sqrt[3]{1+x}}
frequency f(x)=cos(2x)
frequency\:f(x)=\cos(2x)
domain of \sqrt[3]{x+4}
domain\:\sqrt[3]{x+4}
range of ln((x+1)/2)
range\:\ln(\frac{x+1}{2})
inflection (x^3)/3-x^2-15x
inflection\:\frac{x^{3}}{3}-x^{2}-15x
domain of sqrt(25-x^2)-sqrt(x+3)
domain\:\sqrt{25-x^{2}}-\sqrt{x+3}
inverse of f(x)=(x+1)/(x+7)
inverse\:f(x)=\frac{x+1}{x+7}
range of a^x
range\:a^{x}
extreme f(x)=(x-1)e^{-x}
extreme\:f(x)=(x-1)e^{-x}
domain of 1/(sqrt(x+3))
domain\:\frac{1}{\sqrt{x+3}}
asymptotes of f(x)=((-2x^2))/(x^2+4x-5)
asymptotes\:f(x)=\frac{(-2x^{2})}{x^{2}+4x-5}
inverse of f(x)= 7/8-x
inverse\:f(x)=\frac{7}{8}-x
extreme f(x)=-x^3+27x-52
extreme\:f(x)=-x^{3}+27x-52
inverse of f(x)=(4x+10)/(2x-14)
inverse\:f(x)=\frac{4x+10}{2x-14}
domain of f(t)=(1/(t-2))
domain\:f(t)=(\frac{1}{t-2})
range of 5/(1-x)
range\:\frac{5}{1-x}
perpendicular y=-5/2 x-8
perpendicular\:y=-\frac{5}{2}x-8
domain of f(x)=-3x^2
domain\:f(x)=-3x^{2}
symmetry x^2-x+1
symmetry\:x^{2}-x+1
midpoint (4,3),(2,-5)
midpoint\:(4,3),(2,-5)
domain of f(x)= 5/(x^2+24x+135)
domain\:f(x)=\frac{5}{x^{2}+24x+135}
range of f(x)=(x-4)^2-9
range\:f(x)=(x-4)^{2}-9
intercepts of (3x-8)/(2x+1)
intercepts\:\frac{3x-8}{2x+1}
perpendicular y= 5/2 x-8
perpendicular\:y=\frac{5}{2}x-8
asymptotes of f(x)=(x^2-5x+3)/(x-3)
asymptotes\:f(x)=\frac{x^{2}-5x+3}{x-3}
asymptotes of f(x)=(2x)/(x^2-16)
asymptotes\:f(x)=\frac{2x}{x^{2}-16}
domain of sqrt(x)*7-x
domain\:\sqrt{x}\cdot\:7-x
symmetry 36x^2+y^2=36
symmetry\:36x^{2}+y^{2}=36
domain of f(x)=7
domain\:f(x)=7
midpoint (5,6),(-5,-2)
midpoint\:(5,6),(-5,-2)
inverse of f(x)=((5x+4))/(8x-7)
inverse\:f(x)=\frac{(5x+4)}{8x-7}
extreme f(x)=2\sqrt[3]{x}-4
extreme\:f(x)=2\sqrt[3]{x}-4
slope of y= 7/3 x-2
slope\:y=\frac{7}{3}x-2
domain of-x^2-2x-1
domain\:-x^{2}-2x-1
asymptotes of f(x)=(3x+2)/(x-5)
asymptotes\:f(x)=\frac{3x+2}{x-5}
domain of f(x)=(sqrt(2x-8))/(x^2-9)
domain\:f(x)=\frac{\sqrt{2x-8}}{x^{2}-9}
midpoint (-5,5),(2,-3)
midpoint\:(-5,5),(2,-3)
inverse of f(x)=x^3-10
inverse\:f(x)=x^{3}-10
extreme f(x)=(x^3)/3-2x^2-5x
extreme\:f(x)=\frac{x^{3}}{3}-2x^{2}-5x
inverse of 6x^2
inverse\:6x^{2}
line (0,4),(1,1)
line\:(0,4),(1,1)
inverse of y=ln(x)
inverse\:y=\ln(x)
domain of 2x-9
domain\:2x-9
parallel 2x+54=4x-6
parallel\:2x+54=4x-6
inverse of y=2x-5
inverse\:y=2x-5
asymptotes of f(x)= 1/(x+5)-2
asymptotes\:f(x)=\frac{1}{x+5}-2
asymptotes of f(x)=(x^2-25)/(x-4)
asymptotes\:f(x)=\frac{x^{2}-25}{x-4}
domain of sqrt(3x)-sqrt(x+6)
domain\:\sqrt{3x}-\sqrt{x+6}
inverse of f(x)=(x+5)/(x-10)
inverse\:f(x)=\frac{x+5}{x-10}
domain of f(x)= x/((x^2+14x+45))
domain\:f(x)=\frac{x}{(x^{2}+14x+45)}
parallel 5x+7y=8,(5,-2)
parallel\:5x+7y=8,(5,-2)
intercepts of (1/2)^{x+3}
intercepts\:(\frac{1}{2})^{x+3}
periodicity of f(x)=cos(4pix+pi)
periodicity\:f(x)=\cos(4πx+π)
domain of 21x-20
domain\:21x-20
asymptotes of ln(x+2)
asymptotes\:\ln(x+2)
inverse of g(x)=-2
inverse\:g(x)=-2
domain of f(x)=3x^2+1
domain\:f(x)=3x^{2}+1
slope ofintercept-5/2
slopeintercept\:-\frac{5}{2}
domain of f(x)=((x+4))/(x+6)
domain\:f(x)=\frac{(x+4)}{x+6}
asymptotes of y=(x^2)/((2-2x))
asymptotes\:y=\frac{x^{2}}{(2-2x)}
symmetry 2x^2-x+7
symmetry\:2x^{2}-x+7
asymptotes of 1/(x+4)
asymptotes\:\frac{1}{x+4}
1
..
319
320
321
322
323
..
1324