Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=(sqrt(2x+7))/(x-1)
domain\:f(x)=\frac{\sqrt{2x+7}}{x-1}
symmetry y=x^2+1
symmetry\:y=x^{2}+1
range of (2x^2-3)/5
range\:\frac{2x^{2}-3}{5}
domain of x/(4x+9)
domain\:\frac{x}{4x+9}
range of f(x)= 2/(t^2-9)
range\:f(x)=\frac{2}{t^{2}-9}
inverse of f(x)=2^{x^5-1}
inverse\:f(x)=2^{x^{5}-1}
inverse of-4x^5-4
inverse\:-4x^{5}-4
midpoint (-18,-20),(-13,-15)
midpoint\:(-18,-20),(-13,-15)
domain of (2x)/(x^2-1)
domain\:\frac{2x}{x^{2}-1}
domain of 3sqrt(x+1)
domain\:3\sqrt{x+1}
perpendicular y=2x-1,(1,3)
perpendicular\:y=2x-1,(1,3)
asymptotes of f(x)=(1+x)/((4+x)^2)
asymptotes\:f(x)=\frac{1+x}{(4+x)^{2}}
asymptotes of (x^2-3x)/((x-2)^2)
asymptotes\:\frac{x^{2}-3x}{(x-2)^{2}}
critical 2x^3-3x^2
critical\:2x^{3}-3x^{2}
domain of f(x)=-5x+3
domain\:f(x)=-5x+3
inverse of f(x)=x-2(1/2)
inverse\:f(x)=x-2(\frac{1}{2})
domain of f(x)=((3x-7))/((x+1))
domain\:f(x)=\frac{(3x-7)}{(x+1)}
domain of (x-4)/8
domain\:\frac{x-4}{8}
range of (x^2-16)/(4x^2)
range\:\frac{x^{2}-16}{4x^{2}}
midpoint (5,3i),(1,i)
midpoint\:(5,3i),(1,i)
asymptotes of f(x)= 4/(x-4)
asymptotes\:f(x)=\frac{4}{x-4}
slope of 3x+y=1
slope\:3x+y=1
inverse of f(x)=(10-x)/5
inverse\:f(x)=\frac{10-x}{5}
domain of x/(3x+4)
domain\:\frac{x}{3x+4}
domain of f(x)=e^{-x}-3
domain\:f(x)=e^{-x}-3
line y=-6/5 x+3/5
line\:y=-\frac{6}{5}x+\frac{3}{5}
inverse of f(x)=8x+11
inverse\:f(x)=8x+11
domain of f(x)=(3x)/(x+2)
domain\:f(x)=\frac{3x}{x+2}
inverse of f(x)=(x-1)^3
inverse\:f(x)=(x-1)^{3}
domain of-sqrt(-(x+3)/(16))-7
domain\:-\sqrt{-\frac{x+3}{16}}-7
critical f(x)=ln(x-7)
critical\:f(x)=\ln(x-7)
domain of f(x)=x^2-9x-5
domain\:f(x)=x^{2}-9x-5
asymptotes of (x-5)/(x-2)
asymptotes\:\frac{x-5}{x-2}
domain of f(x)= 2/(sqrt(3-2x))
domain\:f(x)=\frac{2}{\sqrt{3-2x}}
domain of f(x)=x+13
domain\:f(x)=x+13
inverse of f(x)= 1/2 x-7/2
inverse\:f(x)=\frac{1}{2}x-\frac{7}{2}
domain of 2/(x+4)
domain\:\frac{2}{x+4}
slope of 2x+3y=3
slope\:2x+3y=3
domain of f(x)=sqrt(x-13)
domain\:f(x)=\sqrt{x-13}
domain of f(x)=(|x-3|)/(x-3)
domain\:f(x)=\frac{\left|x-3\right|}{x-3}
inverse of f(x)= 1/5 x-4
inverse\:f(x)=\frac{1}{5}x-4
inflection f(x)=3x^3-36x
inflection\:f(x)=3x^{3}-36x
asymptotes of f(x)=(3x-1)/(3x+9)
asymptotes\:f(x)=\frac{3x-1}{3x+9}
distance (8,3),(7,-3)
distance\:(8,3),(7,-3)
domain of f(x)=log_{2}(3-|3-x|)
domain\:f(x)=\log_{2}(3-\left|3-x\right|)
symmetry y=x^2-17
symmetry\:y=x^{2}-17
asymptotes of y=(2x^2-2)/(x^2+3x-4)
asymptotes\:y=\frac{2x^{2}-2}{x^{2}+3x-4}
inverse of 4x^2+9
inverse\:4x^{2}+9
slope of y=11x+15
slope\:y=11x+15
domain of y= 1/(x+2)
domain\:y=\frac{1}{x+2}
asymptotes of f(x)= 1/(x^2)-3
asymptotes\:f(x)=\frac{1}{x^{2}}-3
inflection f(x)=(e^x)/(3+e^x)
inflection\:f(x)=\frac{e^{x}}{3+e^{x}}
domain of x/(x^2+4)
domain\:\frac{x}{x^{2}+4}
simplify (0)(12.5)
simplify\:(0)(12.5)
critical f(x)=(sqrt(1-x^2))/x
critical\:f(x)=\frac{\sqrt{1-x^{2}}}{x}
inverse of (x-1)^3+2
inverse\:(x-1)^{3}+2
asymptotes of (x^3+x^2-6x)/(4x^2+4x-8)
asymptotes\:\frac{x^{3}+x^{2}-6x}{4x^{2}+4x-8}
extreme f(x)=sqrt(x-4)
extreme\:f(x)=\sqrt{x-4}
symmetry x^3-x
symmetry\:x^{3}-x
distance (-8,0),(5,-7)
distance\:(-8,0),(5,-7)
domain of f(x)=(x-4)/(x^2-2x-8)
domain\:f(x)=\frac{x-4}{x^{2}-2x-8}
intercepts of x^4+62x^2+128x+65
intercepts\:x^{4}+62x^{2}+128x+65
inverse of f(x)=e^{(2x)/(2x^2-1)}
inverse\:f(x)=e^{\frac{2x}{2x^{2}-1}}
domain of f(x)=(2x^2)/(1-x^2)
domain\:f(x)=\frac{2x^{2}}{1-x^{2}}
domain of x^2-10x+23
domain\:x^{2}-10x+23
line (4,-1),(-1,-4)
line\:(4,-1),(-1,-4)
domain of ln(1-x)
domain\:\ln(1-x)
domain of sqrt(2+5x)
domain\:\sqrt{2+5x}
domain of f(x)=((x+9)(x-9))/(x^2+81)
domain\:f(x)=\frac{(x+9)(x-9)}{x^{2}+81}
asymptotes of (-3x^2-12x-9)/(x^2+5x+4)
asymptotes\:\frac{-3x^{2}-12x-9}{x^{2}+5x+4}
inverse of f(x)=-2x^3-3
inverse\:f(x)=-2x^{3}-3
extreme f(x)=x^2-1,-1<= x<= 2
extreme\:f(x)=x^{2}-1,-1\le\:x\le\:2
parity 2cos(x)
parity\:2\cos(x)
domain of f(x)=sqrt(\sqrt{6)+2}
domain\:f(x)=\sqrt{\sqrt{6}+2}
inverse of 8x+4
inverse\:8x+4
asymptotes of 9/(x^2-16)
asymptotes\:\frac{9}{x^{2}-16}
midpoint (-2,-1),(-8,6)
midpoint\:(-2,-1),(-8,6)
asymptotes of f(x)=(2-x^2)/(x^2+x)
asymptotes\:f(x)=\frac{2-x^{2}}{x^{2}+x}
line (0,9),(0.9,2)
line\:(0,9),(0.9,2)
line (0.1,4),(1,6)
line\:(0.1,4),(1,6)
inverse of f(x)=31x-26
inverse\:f(x)=31x-26
inverse of 2x-5
inverse\:2x-5
critical x^3-12x^2-27x+8
critical\:x^{3}-12x^{2}-27x+8
asymptotes of x^4-2x^3
asymptotes\:x^{4}-2x^{3}
symmetry 2^x
symmetry\:2^{x}
extreme f(x)=((x-3)^2)/(x-5)
extreme\:f(x)=\frac{(x-3)^{2}}{x-5}
domain of f(x)=x^2+x+1
domain\:f(x)=x^{2}+x+1
asymptotes of f(x)= 1/((x+1)(x+2))
asymptotes\:f(x)=\frac{1}{(x+1)(x+2)}
intercepts of f(x)=4x-2
intercepts\:f(x)=4x-2
parallel y=-2/3+5
parallel\:y=-\frac{2}{3}+5
extreme f(x)=27x^3-9x+1
extreme\:f(x)=27x^{3}-9x+1
asymptotes of f(x)=(3x+12)/(-12x+4)
asymptotes\:f(x)=\frac{3x+12}{-12x+4}
domain of f(x)=(sqrt(7x+2))/(x^2-5x+6)
domain\:f(x)=\frac{\sqrt{7x+2}}{x^{2}-5x+6}
domain of f(x)=3x-3
domain\:f(x)=3x-3
asymptotes of 4^x
asymptotes\:4^{x}
inverse of (x+7)^3-2
inverse\:(x+7)^{3}-2
parity f(x)=-x^3+5x-2
parity\:f(x)=-x^{3}+5x-2
slope ofintercept y-2x=0
slopeintercept\:y-2x=0
parallel y=2x-3
parallel\:y=2x-3
range of-5/6 sin(x)
range\:-\frac{5}{6}\sin(x)
1
..
325
326
327
328
329
..
1324