Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=-x^2-8x+2
range\:f(x)=-x^{2}-8x+2
f(x)=(sin(x))/x
f(x)=\frac{\sin(x)}{x}
intercepts of x^2-13x+40
intercepts\:x^{2}-13x+40
domain of f(x)=sqrt(-6x+6)
domain\:f(x)=\sqrt{-6x+6}
asymptotes of x/(e^x)
asymptotes\:\frac{x}{e^{x}}
range of (x^2-4)/(3x-6)
range\:\frac{x^{2}-4}{3x-6}
domain of f(x)=sqrt(-7x+14)
domain\:f(x)=\sqrt{-7x+14}
domain of sqrt((8+x)/(8-x))
domain\:\sqrt{\frac{8+x}{8-x}}
line (-3,2),(-1,6)
line\:(-3,2),(-1,6)
critical f(x)=ln(2+sin(x))
critical\:f(x)=\ln(2+\sin(x))
perpendicular x-4y=20,(-2,4)
perpendicular\:x-4y=20,(-2,4)
domain of f(x)=((x+8))/(x-8)
domain\:f(x)=\frac{(x+8)}{x-8}
symmetry (x+5)^2
symmetry\:(x+5)^{2}
extreme f(x)=(60t)/(t^2+36)
extreme\:f(x)=\frac{60t}{t^{2}+36}
domain of f(x)= 3/x+9
domain\:f(x)=\frac{3}{x}+9
extreme f(x)=-x^5-3x^4+2x^2
extreme\:f(x)=-x^{5}-3x^{4}+2x^{2}
asymptotes of f(x)=(cos(x))/x
asymptotes\:f(x)=\frac{\cos(x)}{x}
asymptotes of f(x)=(5+4x)/(x+3)
asymptotes\:f(x)=\frac{5+4x}{x+3}
range of f(x)= 1/(sqrt(1-x^2))
range\:f(x)=\frac{1}{\sqrt{1-x^{2}}}
critical x+5
critical\:x+5
domain of f(x)=-2(x+2.5)^2+16.5
domain\:f(x)=-2(x+2.5)^{2}+16.5
parity f(x)=x^2+3
parity\:f(x)=x^{2}+3
domain of-(13)/((2+x)^2)
domain\:-\frac{13}{(2+x)^{2}}
domain of 3/(sqrt(2x+4))
domain\:\frac{3}{\sqrt{2x+4}}
domain of f(x)=1275-17t
domain\:f(x)=1275-17t
extreme f(x)=-0.1x^2+0.8x+98.8
extreme\:f(x)=-0.1x^{2}+0.8x+98.8
inflection (e^x)/(6+e^x)
inflection\:\frac{e^{x}}{6+e^{x}}
amplitude of-3sin(2x+pi/2)
amplitude\:-3\sin(2x+\frac{π}{2})
line y=8
line\:y=8
slope ofintercept x-3y=5
slopeintercept\:x-3y=5
range of y=x^3
range\:y=x^{3}
critical f(x)=2x^4-3x^3+x^2
critical\:f(x)=2x^{4}-3x^{3}+x^{2}
extreme f(x)=-0.1x^2+1.4x+98.4
extreme\:f(x)=-0.1x^{2}+1.4x+98.4
inverse of f(x)=(x^7+4)^{1/5}-2
inverse\:f(x)=(x^{7}+4)^{\frac{1}{5}}-2
asymptotes of f(x)= x/(x(x+3))
asymptotes\:f(x)=\frac{x}{x(x+3)}
inverse of f(x)=-1/5 sin(x/3)
inverse\:f(x)=-\frac{1}{5}\sin(\frac{x}{3})
range of x/(x-2)
range\:\frac{x}{x-2}
inverse of f(x)=3-sqrt(4x+2)
inverse\:f(x)=3-\sqrt{4x+2}
domain of sqrt(7x+2)
domain\:\sqrt{7x+2}
range of f(x)=2x^2+16x+96
range\:f(x)=2x^{2}+16x+96
inverse of f(x)=0.5x+3
inverse\:f(x)=0.5x+3
f(x)=1-cos(x)
f(x)=1-\cos(x)
domain of f(x)= 3/(x+13)
domain\:f(x)=\frac{3}{x+13}
asymptotes of f(x)=-5^x
asymptotes\:f(x)=-5^{x}
range of f(x)=x^2+4x+6
range\:f(x)=x^{2}+4x+6
slope of y=-3x+2
slope\:y=-3x+2
asymptotes of f(x)=(x+8)/(x^2(5-2x)^3)
asymptotes\:f(x)=\frac{x+8}{x^{2}(5-2x)^{3}}
inverse of f(x)=\sqrt[3]{x-1}+2
inverse\:f(x)=\sqrt[3]{x-1}+2
domain of f(x)=sqrt(3+x)
domain\:f(x)=\sqrt{3+x}
inverse of 45509584e^{1.01t}
inverse\:45509584e^{1.01t}
1/(x-5)x=7
\frac{1}{x-5}x=7
inverse of f(x)= x/((x+5))
inverse\:f(x)=\frac{x}{(x+5)}
domain of-9/(2xsqrt(x))
domain\:-\frac{9}{2x\sqrt{x}}
inverse of f(x)=2log_{3}(x)
inverse\:f(x)=2\log_{3}(x)
extreme f(x)=xsqrt(18-x^2)
extreme\:f(x)=x\sqrt{18-x^{2}}
intercepts of (x-2)^3+3
intercepts\:(x-2)^{3}+3
domain of f(x)=sqrt(24-3x)
domain\:f(x)=\sqrt{24-3x}
domain of (x-8)/(x^2-25)
domain\:\frac{x-8}{x^{2}-25}
inverse of f(x)=4x+15
inverse\:f(x)=4x+15
range of y=8^x-4
range\:y=8^{x}-4
inverse of f(x)=4x^2+16x-3
inverse\:f(x)=4x^{2}+16x-3
line (1/4 ,-1/2),(3/4 ,2)
line\:(\frac{1}{4},-\frac{1}{2}),(\frac{3}{4},2)
domain of (x^2-7x+10)/(x+2)
domain\:\frac{x^{2}-7x+10}{x+2}
asymptotes of f(x)=(2x)/(x^2-9)
asymptotes\:f(x)=\frac{2x}{x^{2}-9}
asymptotes of y=(x^2-x)/(x^2-5x+4)
asymptotes\:y=\frac{x^{2}-x}{x^{2}-5x+4}
domain of y=f(x)=ln(2x+1)-sqrt(2x-1)
domain\:y=f(x)=\ln(2x+1)-\sqrt{2x-1}
domain of sqrt(-x-2)
domain\:\sqrt{-x-2}
domain of (\sqrt[3]{x})/(x^2+3)
domain\:\frac{\sqrt[3]{x}}{x^{2}+3}
domain of f(x)=2x-2
domain\:f(x)=2x-2
range of f(x)=4+7sqrt(25-x^2)
range\:f(x)=4+7\sqrt{25-x^{2}}
domain of f(x)= x/(x^2+4x+3)
domain\:f(x)=\frac{x}{x^{2}+4x+3}
f(g(2)),g(x)=2x+1,f(x)=x^2
f(g(2)),g(x)=2x+1,f(x)=x^{2}
slope ofintercept y+12=-3(x-4)
slopeintercept\:y+12=-3(x-4)
domain of f(x)=sqrt(2x-8)
domain\:f(x)=\sqrt{2x-8}
amplitude of-2sin(x+pi/2)
amplitude\:-2\sin(x+\frac{π}{2})
inverse of 2x-3
inverse\:2x-3
critical x^3-3x^2+2
critical\:x^{3}-3x^{2}+2
range of (x+1)/(1+1/(x+1))
range\:\frac{x+1}{1+\frac{1}{x+1}}
extreme f(x)=x^3-2x+1
extreme\:f(x)=x^{3}-2x+1
domain of f(x)= 1/2 (3)^{x+4}-5
domain\:f(x)=\frac{1}{2}(3)^{x+4}-5
intercepts of f(x)=x^2(x-4)(x^2+6)
intercepts\:f(x)=x^{2}(x-4)(x^{2}+6)
asymptotes of f(x)=(x^2-2x-3)/(x-2)
asymptotes\:f(x)=\frac{x^{2}-2x-3}{x-2}
domain of f(x)=(6+x)/(1-6x)
domain\:f(x)=\frac{6+x}{1-6x}
intercepts of f(x)=2x-5
intercepts\:f(x)=2x-5
intercepts of f(x)=1-3x-x^2
intercepts\:f(x)=1-3x-x^{2}
symmetry 3x^2+6x+4
symmetry\:3x^{2}+6x+4
domain of f(x)= 6/x+8
domain\:f(x)=\frac{6}{x}+8
range of ln(x+2)
range\:\ln(x+2)
symmetry y=x^2-6x-7
symmetry\:y=x^{2}-6x-7
intercepts of f(x)=(x+7)/(x(x+9))
intercepts\:f(x)=\frac{x+7}{x(x+9)}
domain of (x+7)/(x^2-16)
domain\:\frac{x+7}{x^{2}-16}
midpoint (-9,-7),(-3,1)
midpoint\:(-9,-7),(-3,1)
domain of sqrt(3x+6)
domain\:\sqrt{3x+6}
asymptotes of f(x)=(4x-3)/(x+1)
asymptotes\:f(x)=\frac{4x-3}{x+1}
range of 3x^2-4
range\:3x^{2}-4
asymptotes of f(x)=-1
asymptotes\:f(x)=-1
domain of f(x)=2x^2+3
domain\:f(x)=2x^{2}+3
parity y=x^{cos(x)}
parity\:y=x^{\cos(x)}
inverse of f(x)=(1-2x)/(5x-1)
inverse\:f(x)=\frac{1-2x}{5x-1}
extreme f(x)=5x^3+4x^4
extreme\:f(x)=5x^{3}+4x^{4}
1
..
348
349
350
351
352
..
1324