Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Trigonometry Problems
prove cos(B)csc(B)tan(B)=11
prove\:\cos(B)\csc(B)\tan(B)=11
prove tan(8x)=(8tan(x))/(1-tan^2(x))
prove\:\tan(8x)=\frac{8\tan(x)}{1-\tan^{2}(x)}
prove cos(2x)=5-2cos(x)
prove\:\cos(2x)=5-2\cos(x)
prove cos((3pi)/2*123)=cos(pi/2*123)
prove\:\cos(\frac{3π}{2}\cdot\:123)=\cos(\frac{π}{2}\cdot\:123)
prove tan(-a)=(cos(pi/2+a))/(cos(a))
prove\:\tan(-a)=\frac{\cos(\frac{π}{2}+a)}{\cos(a)}
prove (1-cos^2(x))(cot^2(x)+1)=1
prove\:(1-\cos^{2}(x))(\cot^{2}(x)+1)=1
prove sin(θ)-1/(sin(θ))=cos(θ)
prove\:\sin(θ)-\frac{1}{\sin(θ)}=\cos(θ)
prove cos^8(x)=sin^7(x)cos^1(x)
prove\:\cos^{8}(x)=\sin^{7}(x)\cos^{1}(x)
prove (cot(x)+1)^2-2cot(x)=csc^2(x)
prove\:(\cot(x)+1)^{2}-2\cot(x)=\csc^{2}(x)
prove csc(x)(2)=sin(x)(1/2)
prove\:\csc(x)(2)=\sin(x)(\frac{1}{2})
prove cos(θ)= 1/3
prove\:\cos(θ)=\frac{1}{3}
prove sec(θ)-(tan(θ))/(csc(θ))=cos(θ)
prove\:\sec(θ)-\frac{\tan(θ)}{\csc(θ)}=\cos(θ)
prove sec^2(x)=(1+tan^2(x))
prove\:\sec^{2}(x)=(1+\tan^{2}(x))
prove cot^2(x)sec^2(x)=cot^2(x)+1
prove\:\cot^{2}(x)\sec^{2}(x)=\cot^{2}(x)+1
prove (sin(x))/(cos(x)+sin(x))=1
prove\:\frac{\sin(x)}{\cos(x)+\sin(x)}=1
prove csc(2x)= 1/(2sin(x))
prove\:\csc(2x)=\frac{1}{2\sin(x)}
prove cos(x)=(cot(x))/(tan(x))
prove\:\cos(x)=\frac{\cot(x)}{\tan(x)}
prove (sec(t)-1)(sec(t)+1)=tan^2(t)
prove\:(\sec(t)-1)(\sec(t)+1)=\tan^{2}(t)
prove cos^2(2a)-sin^2(2a)=cos(4a)
prove\:\cos^{2}(2a)-\sin^{2}(2a)=\cos(4a)
prove tan(2x)-2cos(x)=0
prove\:\tan(2x)-2\cos(x)=0
prove (6cot(x))/(sec(x))=6csc(x)-6sin(x)
prove\:\frac{6\cot(x)}{\sec(x)}=6\csc(x)-6\sin(x)
prove cos^2(a)cot^2(a)=cot^2(a)-cos^2(a)
prove\:\cos^{2}(a)\cot^{2}(a)=\cot^{2}(a)-\cos^{2}(a)
prove cos(θ)= 1/2
prove\:\cos(θ)=\frac{1}{2}
prove csc(2x)= 1/(sin^2(x)-1)
prove\:\csc(2x)=\frac{1}{\sin^{2}(x)-1}
prove (1+tan^2(α))(1-sin^2(α))=1
prove\:(1+\tan^{2}(α))(1-\sin^{2}(α))=1
prove csc(θ)-cot(θ)=(1-cos(θ))/(sin(θ))
prove\:\csc(θ)-\cot(θ)=\frac{1-\cos(θ)}{\sin(θ)}
prove tan(x)=tan(x)+2sin^2(x)
prove\:\tan(x)=\tan(x)+2\sin^{2}(x)
prove 1/(2cot(1-cos^2(x)))=csc(2x)
prove\:\frac{1}{2\cot(1-\cos^{2}(x))}=\csc(2x)
prove 2cos(3x)cos(3x)=1-2sin(3x)sin(2x)
prove\:2\cos(3x)\cos(3x)=1-2\sin(3x)\sin(2x)
prove (1+csc(x))(1-csc(x))=-cot^2(x)
prove\:(1+\csc(x))(1-\csc(x))=-\cot^{2}(x)
prove cot(u)= 1/(tan(u))
prove\:\cot(u)=\frac{1}{\tan(u)}
prove-sin(2x)=-4cos(x)sin(x)
prove\:-\sin(2x)=-4\cos(x)\sin(x)
prove cos(θ)(tan(θ)-sec(-θ))=sin(θ)-1
prove\:\cos(θ)(\tan(θ)-\sec(-θ))=\sin(θ)-1
prove cos(pi/2)=-0
prove\:\cos(\frac{π}{2})=-0
prove cos(x)+1=sin(2x)
prove\:\cos(x)+1=\sin(2x)
prove ((sec^2(x)))/(sec^2(x)-1)=csc^2(x)
prove\:\frac{(\sec^{2}(x))}{\sec^{2}(x)-1}=\csc^{2}(x)
prove (sin(x))(tan(x)cos(x)-cot(x)cos(x))=1-2cos(2x)
prove\:(\sin(x))(\tan(x)\cos(x)-\cot(x)\cos(x))=1-2\cos(2x)
prove sin(20)=2cos(10)*sin(10)
prove\:\sin(20^{\circ\:})=2\cos(10^{\circ\:})\cdot\:\sin(10^{\circ\:})
prove sin^2(x)=sec(x)cos(x)-cos^2(x)
prove\:\sin^{2}(x)=\sec(x)\cos(x)-\cos^{2}(x)
prove 1-2sin^2(2θ)=8cos^4(θ)-8cos^2(θ)+1
prove\:1-2\sin^{2}(2θ)=8\cos^{4}(θ)-8\cos^{2}(θ)+1
prove sech^2(x)+tanh^2(x)=1
prove\:\sech^{2}(x)+\tanh^{2}(x)=1
prove sec(x)cos(x)-2cos^2(x)=-(cos(2x))
prove\:\sec(x)\cos(x)-2\cos^{2}(x)=-(\cos(2x))
prove 2cos^2(A)-cos(2A)-1=0
prove\:2\cos^{2}(A)-\cos(2A)-1=0
prove ((2sec(x)))/(tan(x))=2csc(x)
prove\:\frac{(2\sec(x))}{\tan(x)}=2\csc(x)
prove (cot(x)+1)/(cos(x)+sin(x))=csc(x)
prove\:\frac{\cot(x)+1}{\cos(x)+\sin(x)}=\csc(x)
prove sec^2(y)=(sec(y))^2
prove\:\sec^{2}(y)=(\sec(y))^{2}
prove csc(A)= 7/4
prove\:\csc(A)=\frac{7}{4}
prove (sin^2(x))/(sin^2(x))=sin(x)
prove\:\frac{\sin^{2}(x)}{\sin^{2}(x)}=\sin(x)
prove csc(cos(+sin(x)))=cot(+1)
prove\:\csc(\cos(+\sin(x)))=\cot(+1)
prove 4sin(x/2)cos(x/2)=2sin(x)
prove\:4\sin(\frac{x}{2})\cos(\frac{x}{2})=2\sin(x)
prove 5cos(x)-3=3cos(x)-4
prove\:5\cos(x)-3=3\cos(x)-4
prove (cos(φ)+1)/(sin(φ)+tan(φ))=cot(φ)
prove\:\frac{\cos(φ)+1}{\sin(φ)+\tan(φ)}=\cot(φ)
prove tan(x)+tan(x)=0
prove\:\tan(x)+\tan(x)=0
prove 2cos^2(x)-cos(2x)=1
prove\:2\cos^{2}(x)-\cos(2x)=1
prove-cot^2(x)=1-csc^2(x)
prove\:-\cot^{2}(x)=1-\csc^{2}(x)
prove 1/(tan(2θ))=(cot^2(θ)-1)/(2cot(θ))
prove\:\frac{1}{\tan(2θ)}=\frac{\cot^{2}(θ)-1}{2\cot(θ)}
prove (1-cos(θ))+sin^2(θ)=2
prove\:(1-\cos(θ))+\sin^{2}(θ)=2
prove 1/(sec(θ))=(sec(θ))^{-1}
prove\:\frac{1}{\sec(θ)}=(\sec(θ))^{-1}
prove sin^2(2x)= 1/(2(1-cos(4x)))
prove\:\sin^{2}(2x)=\frac{1}{2(1-\cos(4x))}
prove sin(2θ)+cos(2θ)=1
prove\:\sin(2θ)+\cos(2θ)=1
prove 25(sec^2(5x)-tan^2(5x))=25
prove\:25(\sec^{2}(5x)-\tan^{2}(5x))=25
prove cot^2(x)=((cos^2(x)))/(1-cos^2(x))
prove\:\cot^{2}(x)=\frac{(\cos^{2}(x))}{1-\cos^{2}(x)}
prove+(cos(x))/(1-sin(x))=sec(x)+tan(x)
prove\:+\frac{\cos(x)}{1-\sin(x)}=\sec(x)+\tan(x)
prove sin(A)cos(A)tan(A)=sin^2(A)
prove\:\sin(A)\cos(A)\tan(A)=\sin^{2}(A)
prove sin((4pi)/3)=sqrt(3)cos((2pi)/3)
prove\:\sin(\frac{4π}{3})=\sqrt{3}\cos(\frac{2π}{3})
prove (sin(2x)+sin(6x))/(cos(2x)-cos(6x))=cot(2x)
prove\:\frac{\sin(2x)+\sin(6x)}{\cos(2x)-\cos(6x)}=\cot(2x)
prove sin^2(x)+sin^2(θ)=1
prove\:\sin^{2}(x)+\sin^{2}(θ)=1
prove (cot(x)-sec(x))/(csc(x))=1
prove\:\frac{\cot(x)-\sec(x)}{\csc(x)}=1
prove tan^2(0)=-tan(0)
prove\:\tan^{2}(0)=-\tan(0)
prove csc(2y)=(csc(y))/(2cos(y))
prove\:\csc(2y)=\frac{\csc(y)}{2\cos(y)}
prove cos(θ-270)=-sin(θ)
prove\:\cos(θ-270^{\circ\:})=-\sin(θ)
prove 1+tan^2(x)+cot(x)=sec^2(x)+cos(x)
prove\:1+\tan^{2}(x)+\cot(x)=\sec^{2}(x)+\cos(x)
prove cos(θ)sec(θ)=tan(θ)cot(θ)
prove\:\cos(θ)\sec(θ)=\tan(θ)\cot(θ)
prove cos(x)-cos(x)=2cos(x)
prove\:\cos(x)-\cos(x)=2\cos(x)
prove (cos^2(2θ))/2 =(1+cos(4θ))/8
prove\:\frac{\cos^{2}(2θ)}{2}=\frac{1+\cos(4θ)}{8}
prove (cos^2(x))/(sin^2(x))+1=csc^2(x)
prove\:\frac{\cos^{2}(x)}{\sin^{2}(x)}+1=\csc^{2}(x)
prove 1/(csc(x))+1= 1/(sin(x))+1
prove\:\frac{1}{\csc(x)}+1=\frac{1}{\sin(x)}+1
prove (sin(2θ))(tan(θ))+cos(2θ)=1
prove\:(\sin(2θ))(\tan(θ))+\cos(2θ)=1
prove cot(x)-cot(x)cos^2(x)=sin(x)cos(x)
prove\:\cot(x)-\cot(x)\cos^{2}(x)=\sin(x)\cos(x)
prove cot^2(θ)=(csc^2(θ))/(sec^2(θ))
prove\:\cot^{2}(θ)=\frac{\csc^{2}(θ)}{\sec^{2}(θ)}
prove 1/(sec(θ))=arcsec(θ)
prove\:\frac{1}{\sec(θ)}=\arcsec(θ)
prove ((cot(x)))/((csc(x)))=cos(x)
prove\:\frac{(\cot(x))}{(\csc(x))}=\cos(x)
prove (1+cot^2(x))/(cot^2(x))=sec^2(x)
prove\:\frac{1+\cot^{2}(x)}{\cot^{2}(x)}=\sec^{2}(x)
prove sec^2(x)-tan^2(x)=sec(x)cos(x)
prove\:\sec^{2}(x)-\tan^{2}(x)=\sec(x)\cos(x)
prove cos^2(4x)= 1/2+1/2 cos(16x)
prove\:\cos^{2}(4x)=\frac{1}{2}+\frac{1}{2}\cos(16x)
prove-3sin(35)-3sin(15)=-6sin(25)cos(10)
prove\:-3\sin(35)-3\sin(15)=-6\sin(25)\cos(10)
prove ((sec^2(t)))/(sec^2(t)-1)=csc^2(t)
prove\:\frac{(\sec^{2}(t))}{\sec^{2}(t)-1}=\csc^{2}(t)
prove sin^2(x)=cos(2x)+2
prove\:\sin^{2}(x)=\cos(2x)+2
prove 1+cos^2(x)=2-sin^2(x)
prove\:1+\cos^{2}(x)=2-\sin^{2}(x)
prove sin((3pi)/2+0)=-cos(0)
prove\:\sin(\frac{3π}{2}+0)=-\cos(0)
prove sin^2(x)=cos(2x)-2
prove\:\sin^{2}(x)=\cos(2x)-2
prove (tan(θ)cot(θ))/(cos(θ))=sec(θ)
prove\:\frac{\tan(θ)\cot(θ)}{\cos(θ)}=\sec(θ)
prove 2(cos(θ-1))^2=cos^4(θ)-sin^4(θ)
prove\:2(\cos(θ-1))^{2}=\cos^{4}(θ)-\sin^{4}(θ)
prove (sec^2(x/2))/2 = 1/(1+cos(x))
prove\:\frac{\sec^{2}(\frac{x}{2})}{2}=\frac{1}{1+\cos(x)}
prove cos(x)= 15/17
prove\:\cos(x)=\frac{15}{17}
prove tan(b)+cot(b)= 1/(sin(b)cos(b))
prove\:\tan(b)+\cot(b)=\frac{1}{\sin(b)\cos(b)}
prove csc(A)-sin(A)=(cos(A))(cot(A))
prove\:\csc(A)-\sin(A)=(\cos(A))(\cot(A))
prove (cos^2(x))/(cos^2(x))=1
prove\:\frac{\cos^{2}(x)}{\cos^{2}(x)}=1
prove ((tan(x)cot(x)))/(sec(x))=cos(x)
prove\:\frac{(\tan(x)\cot(x))}{\sec(x)}=\cos(x)
prove sec(b)cot(b)=csc(b)tan(b)
prove\:\sec(b)\cot(b)=\csc(b)\tan(b)
1
..
258
259
260
261
262
..
451