Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Trigonometry Problems
(-sqrt(3))/2 <cos(x)<= 1/2
\frac{-\sqrt{3}}{2}<\cos(x)\le\:\frac{1}{2}
(-1)/2 <sin^2(x)< 1/2
\frac{-1}{2}<\sin^{2}(x)<\frac{1}{2}
cot(θ)=-1\land csc(θ)<0
\cot(θ)=-1\land\:\csc(θ)<0
cos(θ)<0\land csc(θ)>0
\cos(θ)<0\land\:\csc(θ)>0
cot(θ)=-3\land cos(θ)<0
\cot(θ)=-3\land\:\cos(θ)<0
0<cos(x)<1
0<\cos(x)<1
cos(θ)<0\land sin(θ)<0
\cos(θ)<0\land\:\sin(θ)<0
-1<= sin(x)<= 0
-1\le\:\sin(x)\le\:0
0<2sin(x)+1<1+sqrt(3)
0<2\sin(x)+1<1+\sqrt{3}
sin(x)=-4/5 \land cos(x)<0,cos(2/x)
\sin(x)=-\frac{4}{5}\land\:\cos(x)<0,\cos(\frac{2}{x})
sin(x)=-45\land cos(x)<0,cos((5pi)/6-x)
\sin(x)=-45\land\:\cos(x)<0,\cos(\frac{5π}{6}-x)
-2<= 2/(cos(x))<= 2
-2\le\:\frac{2}{\cos(x)}\le\:2
-2<= 2/(cos(x))<= 1
-2\le\:\frac{2}{\cos(x)}\le\:1
2-4sin(3x)0<= x<= 2pi
2-4\sin(3x)0\le\:x\le\:2π
(2cos(t))(t-cos(t))0<t<2pi
(2\cos(t))(t-\cos(t))0<t<2π
0<2sin(x)cos(x)<2sqrt(2)
0<2\sin(x)\cos(x)<2\sqrt{2}
cot(θ)>0\land csc(θ)<0
\cot(θ)>0\land\:\csc(θ)<0
sin(A)=(-4)/5 \land cos(A)>0,cos(A)
\sin(A)=\frac{-4}{5}\land\:\cos(A)>0,\cos(A)
sin(θ)= 2/5 \land sec(θ)>0
\sin(θ)=\frac{2}{5}\land\:\sec(θ)>0
csc(θ)<0\land cos(θ)>0
\csc(θ)<0\land\:\cos(θ)>0
sin(2x)0<= pi/2 \land 0-pi/2 <0
\sin(2x)0\le\:\frac{π}{2}\land\:0-\frac{π}{2}<0
[sin(pi)t]2<= t<= 4
[\sin(π)t]2\le\:t\le\:4
3-3(0)^2<= g(0)<= 3cos(0)
3-3(0)^{2}\le\:g(0)\le\:3\cos(0)
0<sin(x)cos(x)<sqrt(2)
0<\sin(x)\cos(x)<\sqrt{2}
csc(θ)<0\land (csc(θ))(cot(θ))>0
\csc(θ)<0\land\:(\csc(θ))(\cot(θ))>0
1>arctan(x)>0
1>\arctan(x)>0
cosh(θ)= 8/3 \land θ<0,sinh(θ)
\cosh(θ)=\frac{8}{3}\land\:θ<0,\sinh(θ)
cos(θ)=(sqrt(3))/2 \land csc(θ)<0
\cos(θ)=\frac{\sqrt{3}}{2}\land\:\csc(θ)<0
0<= y<= sin(3.1416)
0\le\:y\le\:\sin(3.1416)
-1<= 2/(cos(x))<= 1
-1\le\:\frac{2}{\cos(x)}\le\:1
0<= sin(x)<1
0\le\:\sin(x)<1
-1<sec(x)<1
-1<\sec(x)<1
-1<tan(x/2)<-1/5
-1<\tan(\frac{x}{2})<-\frac{1}{5}
1<= sin(θ)<3
1\le\:\sin(θ)<3
cos(θ)>0\land sin(θ)<0
\cos(θ)>0\land\:\sin(θ)<0
tan(θ)=1\land cos(θ)>0,csc(θ)
\tan(θ)=1\land\:\cos(θ)>0,\csc(θ)
-1<sin(x)<= 0
-1<\sin(x)\le\:0
tan(θ)= 1/3 \land sin(θ)<0
\tan(θ)=\frac{1}{3}\land\:\sin(θ)<0
cot(θ)=2\land sec(θ)>= 0
\cot(θ)=2\land\:\sec(θ)\ge\:0
sin(θ)=-(sqrt(3))/2 \land cos(θ)>= 0
\sin(θ)=-\frac{\sqrt{3}}{2}\land\:\cos(θ)\ge\:0
-1<= (pi(cos(x)-sin(x)))/(4sqrt(2))<= 1
-1\le\:\frac{π(\cos(x)-\sin(x))}{4\sqrt{2}}\le\:1
0<= cos(θ)<= 1
0\le\:\cos(θ)\le\:1
-2sin^2(x)0<x<360
-2\sin^{2}(x)0<x<360
-1<= tan(x/2-pi/3)<= sqrt(3)
-1\le\:\tan(\frac{x}{2}-\frac{π}{3})\le\:\sqrt{3}
-1>=-cos(2x)>= 1
-1\ge\:-\cos(2x)\ge\:1
0<82.5-67.5cos(pi/6 t)<20
0<82.5-67.5\cos(\frac{π}{6}t)<20
csc(x)=4\land cot(x)<0
\csc(x)=4\land\:\cot(x)<0
cos(x^2)0<x<sqrt(x)
\cos(x^{2})0<x<\sqrt{x}
sin(x)=-4/5 \land cos(x)<0,sin(2x)
\sin(x)=-\frac{4}{5}\land\:\cos(x)<0,\sin(2x)
cos(θ)= 3/7 \land sin(θ)>0
\cos(θ)=\frac{3}{7}\land\:\sin(θ)>0
cosh(θ)= 26/7 \land θ<0,sinh(θ)
\cosh(θ)=\frac{26}{7}\land\:θ<0,\sinh(θ)
-pi/2 <arcsin(x)< pi/2
-\frac{π}{2}<\arcsin(x)<\frac{π}{2}
-sqrt(2)<= cos(2x)<= sqrt(2)
-\sqrt{2}\le\:\cos(2x)\le\:\sqrt{2}
(11pi)/9 <= arctan(θ)<= (13pi)/9
\frac{11π}{9}\le\:\arctan(θ)\le\:\frac{13π}{9}
sin(x)=-(sqrt(3))/5 \land cos(x)>0
\sin(x)=-\frac{\sqrt{3}}{5}\land\:\cos(x)>0
cos(θ)=0.222\land tan(θ)<0,sin(θ)
\cos(θ)=0.222\land\:\tan(θ)<0,\sin(θ)
sin(x)0<= x<= pi
\sin(x)0\le\:x\le\:π
x=-4\land csc(x)>0
x=-4\land\:\csc(x)>0
cos(θ)<0\land (cos(θ))(sin(θ))<0
\cos(θ)<0\land\:(\cos(θ))(\sin(θ))<0
cosh(θ)= 15/4 \land θ<0,sinh(θ)
\cosh(θ)=\frac{15}{4}\land\:θ<0,\sinh(θ)
2pi>sqrt(3)tan(θ)+1>= 0
2π>\sqrt{3}\tan(θ)+1\ge\:0
sin(3x)0<= x<= 2pi
\sin(3x)0\le\:x\le\:2π
sin(θ)=-0.616\land tan(θ)>0
\sin(θ)=-0.616\land\:\tan(θ)>0
tan(θ)=-32\land csc(θ)>0
\tan(θ)=-32\land\:\csc(θ)>0
0<= arctan(x)<= pi/4
0\le\:\arctan(x)\le\:\frac{π}{4}
sin(θ)<0\land tan(θ)>0
\sin(θ)<0\land\:\tan(θ)>0
-1<sin^2(x)<1
-1<\sin^{2}(x)<1
cot(θ)= 21/20 \land cos(θ)>0
\cot(θ)=\frac{21}{20}\land\:\cos(θ)>0
sin(θ)=(sqrt(3))/2 \land tan(θ)>0
\sin(θ)=\frac{\sqrt{3}}{2}\land\:\tan(θ)>0
sin(θ)=-6/9 \land tan(θ)>0
\sin(θ)=-\frac{6}{9}\land\:\tan(θ)>0
cos(θ)= 5/7 \land cot(θ)<0,sin(θ)
\cos(θ)=\frac{5}{7}\land\:\cot(θ)<0,\sin(θ)
sec(θ)<0\land (cos(θ))(sin(θ))<0
\sec(θ)<0\land\:(\cos(θ))(\sin(θ))<0
0<= a+barctan(x)<= 1
0\le\:a+b\arctan(x)\le\:1
cos(x)<sin(x)<1
\cos(x)<\sin(x)<1
cos(θ)=45\land 0<θ<90,sin(θ)
\cos(θ)=45\land\:0^{\circ\:}<θ<90^{\circ\:},\sin(θ)
sin(a-pi/2)*csc(2pi+a)90<= a<= 180
\sin(a-\frac{π}{2})\cdot\:\csc(2π+a)90^{\circ\:}\le\:a\le\:180^{\circ\:}
arcsec(-sqrt(2))0<= x<= 2pi
\arcsec(-\sqrt{2})0\le\:x\le\:2π
-1<sin(pix)<1
-1<\sin(πx)<1
cos(θ)=25\land tan(θ)<0
\cos(θ)=25\land\:\tan(θ)<0
cos(x)>0\land tan(x)>0
\cos(x)>0\land\:\tan(x)>0
-1<cot(x)<1
-1<\cot(x)<1
tan(θ)<0\land sec(θ)>0
\tan(θ)<0\land\:\sec(θ)>0
sin(θ)= 9/41 \land cos(θ)>0
\sin(θ)=\frac{9}{41}\land\:\cos(θ)>0
sin(x)0<x<2pi
\sin(x)0<x<2π
cos(-1)-pi<t<= pi
\cos(-1)-π<t\le\:π
derivative of arcsech(cos(5x)0)<x< pi/5
\frac{d}{dx}(\arcsech(\cos(5x))0)<x<\frac{π}{5}
tan(θ)>0\land cos(θ)<0
\tan(θ)>0\land\:\cos(θ)<0
(11pi)/2 <= arctan(θ)<= (13pi)/9
\frac{11π}{2}\le\:\arctan(θ)\le\:\frac{13π}{9}
cos(1/4 x)0<x<2pi
\cos(\frac{1}{4}x)0<x<2π
0<= tan^2(x)<= 3
0\le\:\tan^{2}(x)\le\:3
tan(θ)= 7/11 \land cos(θ)>0
\tan(θ)=\frac{7}{11}\land\:\cos(θ)>0
cosh(θ)= 7/5 \land θ<0,sinh(θ)
\cosh(θ)=\frac{7}{5}\land\:θ<0,\sinh(θ)
cos(x) 1/3 e0<x<90
\cos(x)\frac{1}{3}e0<x<90^{\circ\:}
tan(θ)=2\land cos(θ)<0
\tan(θ)=2\land\:\cos(θ)<0
tan(θ)=-4/3 \land sin(θ)<0,sec(θ)
\tan(θ)=-\frac{4}{3}\land\:\sin(θ)<0,\sec(θ)
tan(x)0<= x<= pi/6
\tan(x)0\le\:x\le\:\frac{π}{6}
cot(t)<0\land sec(t)>0
\cot(t)<0\land\:\sec(t)>0
4cos(θ)4sin(θ)0<= θ<= pi/2
4\cos(θ)4\sin(θ)0\le\:θ\le\:\frac{π}{2}
-1>= cos(2x)>= 1
-1\ge\:\cos(2x)\ge\:1
-1/2 <= sin(x)<= (sqrt(3))/2
-\frac{1}{2}\le\:\sin(x)\le\:\frac{\sqrt{3}}{2}
1
..
276
277
278
279
280
..
451