Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 3/(\sqrt[3]{x)}
\int\:\frac{3}{\sqrt[3]{x}}dx
d/(dt)(-3e^{-3t})
\frac{d}{dt}(-3e^{-3t})
simplify 4sin(x+pi/3)-1
simplify\:4\sin(x+\frac{π}{3})-1
(\partial)/(\partial y)(1+2xsqrt(y))
\frac{\partial\:}{\partial\:y}(1+2x\sqrt{y})
derivative of 1-e^{3x^2}
derivative\:1-e^{3x^{2}}
(\partial)/(\partial x)(\sqrt[3]{x^3+y^3})
\frac{\partial\:}{\partial\:x}(\sqrt[3]{x^{3}+y^{3}})
x(dy)/(dx)=y+sqrt(x^2-y^2)
x\frac{dy}{dx}=y+\sqrt{x^{2}-y^{2}}
inverse oflaplace (2s^2)/(s^4-1)
inverselaplace\:\frac{2s^{2}}{s^{4}-1}
integral from 0 to 1 of 2x(x^2+1)^2
\int\:_{0}^{1}2x(x^{2}+1)^{2}dx
derivative of f(x)= 6/(x^2)
derivative\:f(x)=\frac{6}{x^{2}}
taylor sqrt(x),64
taylor\:\sqrt{x},64
integral of+x/(sqrt(3-x^4))
\int\:+\frac{x}{\sqrt{3-x^{4}}}dx
y^{''}-4y^'+4y=0,y(0)=1,y^'(0)=1
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=0,y(0)=1,y^{\prime\:}(0)=1
(\partial)/(\partial x)(x^2+xy^2+y^2)
\frac{\partial\:}{\partial\:x}(x^{2}+xy^{2}+y^{2})
integral from 0 to 1 of (x^2+8)(e^{-x})
\int\:_{0}^{1}(x^{2}+8)(e^{-x})dx
limit as x approaches 2-of (x-3)/(x-2)
\lim\:_{x\to\:2-}(\frac{x-3}{x-2})
integral of (e^x)/(e^x-1)
\int\:\frac{e^{x}}{e^{x}-1}dx
integral from 1 to 2 of (x-1/x)
\int\:_{1}^{2}(x-\frac{1}{x})dx
integral from 2 to 5 of (ln(x^5))/x
\int\:_{2}^{5}\frac{\ln(x^{5})}{x}dx
taylor (1+x)^{1/3}
taylor\:(1+x)^{\frac{1}{3}}
integral of 5e^{2x}
\int\:5e^{2x}dx
y^{''}+9y=te^{3t}
y^{\prime\:\prime\:}+9y=te^{3t}
y^'-y=8e^x+18e^{4x}
y^{\prime\:}-y=8e^{x}+18e^{4x}
integral of 4sec^2(x)tan(x)
\int\:4\sec^{2}(x)\tan(x)dx
derivative of \sqrt[4]{(4x/(6x-5)})
\frac{d}{dx}(\sqrt[4]{\frac{4x}{6x-5}})
derivative of f(x)=x^3-2
derivative\:f(x)=x^{3}-2
derivative of log_{4}(x^2-7x)
\frac{d}{dx}(\log_{4}(x^{2}-7x))
integral of sqrt(x^2+9)
\int\:\sqrt{x^{2}+9}dx
y^'-2ty=9t^2e^{t^2}
y^{\prime\:}-2ty=9t^{2}e^{t^{2}}
(\partial)/(\partial x)(xsin(x^2y))
\frac{\partial\:}{\partial\:x}(x\sin(x^{2}y))
y^8-(x^4sqrt(y^9+4))/(sqrt(x^5+4)y^')=0
y^{8}-\frac{x^{4}\sqrt{y^{9}+4}}{\sqrt{x^{5}+4}y^{\prime\:}}=0
integral from 0 to 1 of sqrt(1+4x^2)
\int\:_{0}^{1}\sqrt{1+4x^{2}}dx
derivative of (3x-2)/(2x+1)
derivative\:\frac{3x-2}{2x+1}
derivative of f(x)=e^{tan(θ)}
derivative\:f(x)=e^{\tan(θ)}
(dy)/(dθ)=sin(θ)
\frac{dy}{dθ}=\sin(θ)
integral of xe^{xy}+2xy+1/x
\int\:xe^{xy}+2xy+\frac{1}{x}
limit as x approaches-2 of ((x-2))/(x+2)
\lim\:_{x\to\:-2}(\frac{(x-2)}{x+2})
integral from-3 to 5 of (1+4x)
\int\:_{-3}^{5}(1+4x)dx
integral of sin(x)sin(x)
\int\:\sin(x)\sin(x)dx
tangent of y=ln(x^2),\at x=4
tangent\:y=\ln(x^{2}),\at\:x=4
(\partial)/(\partial y)(1/(xy^2-x^2y))
\frac{\partial\:}{\partial\:y}(\frac{1}{xy^{2}-x^{2}y})
integral of x/(3+x^2)
\int\:\frac{x}{3+x^{2}}dx
xy^'-2y=x^3
xy^{\prime\:}-2y=x^{3}
area y=sqrt(x-1),y=0,x=9
area\:y=\sqrt{x-1},y=0,x=9
derivative of sqrt(x)-2\sqrt[3]{x}
derivative\:\sqrt{x}-2\sqrt[3]{x}
limit as h approaches 1 of (e^{-h}-1)/h
\lim\:_{h\to\:1}(\frac{e^{-h}-1}{h})
roots sqrt(a^2+x^2)
roots\:\sqrt{a^{2}+x^{2}}
limit as x approaches 3 of x^2-3
\lim\:_{x\to\:3}(x^{2}-3)
derivative of (x-1cos(x))
\frac{d}{dx}((x-1)\cos(x))
derivative of xdx
\frac{d}{dx}(xdx)
integral of e^x(e^x+1)^2
\int\:e^{x}(e^{x}+1)^{2}dx
y^{''}+9y=sec(3x^{18}x)-36
y^{\prime\:\prime\:}+9y=\sec(3x^{18}x)-36
integral of 5^t
\int\:5^{t}dt
integral of 1/(u^2+xu)
\int\:\frac{1}{u^{2}+xu}du
integral from 0 to 1 of 1-2x-3x^2
\int\:_{0}^{1}1-2x-3x^{2}dx
(dy)/(dx)y=(4x-7)^2
\frac{dy}{dx}y=(4x-7)^{2}
slope of (7,5),(3,2)
slope\:(7,5),(3,2)
limit as x approaches 0 of (1-cos(ax))/(x^2)
\lim\:_{x\to\:0}(\frac{1-\cos(ax)}{x^{2}})
derivative of sin^3(x/3)
\frac{d}{dx}(\sin^{3}(\frac{x}{3}))
integral of (sqrt(x))/(x+2)
\int\:\frac{\sqrt{x}}{x+2}dx
sum from n=1 to infinity of (n!)/(2n!)
\sum\:_{n=1}^{\infty\:}\frac{n!}{2n!}
derivative of 2/(x^5)
\frac{d}{dx}(\frac{2}{x^{5}})
derivative of f(x)2z(9z^2-3z+1)^4
derivative\:f(x)2z(9z^{2}-3z+1)^{4}
integral from pi/6 to pi of sin(θ)
\int\:_{\frac{π}{6}}^{π}\sin(θ)dθ
integral of 8/(cos(x)-1)
\int\:\frac{8}{\cos(x)-1}dx
area y=x^3,x=-2,x=2
area\:y=x^{3},x=-2,x=2
limit as x approaches 3 of (x^2+4)/(x-5)
\lim\:_{x\to\:3}(\frac{x^{2}+4}{x-5})
derivative of sqrt(13x)
derivative\:\sqrt{13x}
derivative of (7x^3-5^9)
\frac{d}{dx}((7x^{3}-5)^{9})
derivative of f(x)=(2csc(x))/x
derivative\:f(x)=\frac{2\csc(x)}{x}
integral from 6 to 7 of 1/20+x/(40)
\int\:_{6}^{7}\frac{1}{20}+\frac{x}{40}dx
integral of 1/(2+9x)
\int\:\frac{1}{2+9x}dx
limit as x approaches 0 of 2x*cot(3x)
\lim\:_{x\to\:0}(2x\cdot\:\cot(3x))
(d^3)/(dx^3)(sqrt(4t+8))
\frac{d^{3}}{dx^{3}}(\sqrt{4t+8})
integral of 5/(sqrt(x^2+4x+13))
\int\:\frac{5}{\sqrt{x^{2}+4x+13}}dx
integral of (6t^3-4t^2+24t)/(t^2+4)
\int\:\frac{6t^{3}-4t^{2}+24t}{t^{2}+4}dt
derivative of e^{4x}ln(y)
\frac{d}{dx}(e^{4x}\ln(y))
tangent of f(x)=2x^3-9x^2-60x-2
tangent\:f(x)=2x^{3}-9x^{2}-60x-2
integral of (x/(x^2+1))
\int\:(\frac{x}{x^{2}+1})dx
integral of csc^2(8θ)cot(8θ)
\int\:\csc^{2}(8θ)\cot(8θ)dθ
derivative of f(θ)=cos(θ^2)
derivative\:f(θ)=\cos(θ^{2})
integral from 0 to 1 of x^2sin(npix)
\int\:_{0}^{1}x^{2}\sin(nπx)dx
integral of tan^2(3x-1)
\int\:\tan^{2}(3x-1)dx
integral of 5x^{-6/7}
\int\:5x^{-\frac{6}{7}}dx
limit as x approaches 3 of (x-2)/(6-2x)
\lim\:_{x\to\:3}(\frac{x-2}{6-2x})
derivative of y= 1/(cos(x/2))
derivative\:y=\frac{1}{\cos(\frac{x}{2})}
integral of 216x^2cos(6x)
\int\:216x^{2}\cos(6x)dx
(\partial)/(\partial y)(x^{2/3}y^{1/3})
\frac{\partial\:}{\partial\:y}(x^{\frac{2}{3}}y^{\frac{1}{3}})
limit as x approaches 3 of-3/7 x+4/11
\lim\:_{x\to\:3}(-\frac{3}{7}x+\frac{4}{11})
derivative of x^2e^x-2xe^x+2e^x
derivative\:x^{2}e^{x}-2xe^{x}+2e^{x}
y^{''}-10y^'+26y=4
y^{\prime\:\prime\:}-10y^{\prime\:}+26y=4
integral of 4/(4x^2+4x+65)
\int\:\frac{4}{4x^{2}+4x+65}dx
integral from 0 to 2 of sqrt(9x+19)
\int\:_{0}^{2}\sqrt{9x+19}dx
(dy)/(dx)(x^2+1)+7x(y-1)=0,y(0)=4
\frac{dy}{dx}(x^{2}+1)+7x(y-1)=0,y(0)=4
integral of (x^2)/(sqrt(x^2+9))
\int\:\frac{x^{2}}{\sqrt{x^{2}+9}}dx
(\partial)/(\partial y)(y^2z)
\frac{\partial\:}{\partial\:y}(y^{2}z)
integral of (3x^3+4x)/((x^2+1)^2)
\int\:\frac{3x^{3}+4x}{(x^{2}+1)^{2}}dx
integral of p^4e^{-p}
\int\:p^{4}e^{-p}dp
limit as x approaches-1 of x^3-2x^2+x-3
\lim\:_{x\to\:-1}(x^{3}-2x^{2}+x-3)
integral from 0 to x of sqrt(1+81/4 t)
\int\:_{0}^{x}\sqrt{1+\frac{81}{4}t}dt
1
..
1074
1075
1076
1077
1078
..
2459