Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (x^3+8e^x)
\frac{d}{dx}((x^{3}+8)e^{x})
derivative of 3^x-3e^pi+x^3
\frac{d}{dx}(3^{x}-3e^{π}+x^{3})
(\partial)/(\partial x)(x^2(e^{-xyz}))
\frac{\partial\:}{\partial\:x}(x^{2}(e^{-xyz}))
derivative of (2x+1(x-5))
\frac{d}{dx}((2x+1)(x-5))
integral of (21pi)/2 cos((21pix)/2)
\int\:\frac{21π}{2}\cos(\frac{21πx}{2})dx
derivative of sqrt(x+2)*sin(x)
\frac{d}{dx}(\sqrt{x+2}\cdot\:\sin(x))
limit as x approaches 0 of 8/(2+e^{1/x)}
\lim\:_{x\to\:0}(\frac{8}{2+e^{\frac{1}{x}}})
derivative of (2cos(x)/(1+sin(x)))
\frac{d}{dx}(\frac{2\cos(x)}{1+\sin(x)})
limit as x approaches infinity of x^2-x
\lim\:_{x\to\:\infty\:}(x^{2}-x)
derivative of f(x)=(12)/(sqrt(x))
derivative\:f(x)=\frac{12}{\sqrt{x}}
derivative of sec^3(sqrt(x))
\frac{d}{dx}(\sec^{3}(\sqrt{x}))
sum from n=1 to infinity of (ln(3))^n
\sum\:_{n=1}^{\infty\:}(\ln(3))^{n}
tangent of f(x)=sqrt(7x+11),(2,5)
tangent\:f(x)=\sqrt{7x+11},(2,5)
y^{''}-4y=e^xcos(x),y(0)=0.7,y^'(0)=-1.5
y^{\prime\:\prime\:}-4y=e^{x}\cos(x),y(0)=0.7,y^{\prime\:}(0)=-1.5
(dy)/(dt)=y^2
\frac{dy}{dt}=y^{2}
derivative of f(x)=ln(6x)
derivative\:f(x)=\ln(6x)
integral of e^{2x}cos(5x)
\int\:e^{2x}\cos(5x)dx
(dy)/(dx)+y=cos(x)
\frac{dy}{dx}+y=\cos(x)
integral of (5sin(2θ))^2
\int\:(5\sin(2θ))^{2}dθ
integral of 1/(x-8sqrt(x)+15)
\int\:\frac{1}{x-8\sqrt{x}+15}dx
integral of (x^2+3x)
\int\:(x^{2}+3x)dx
partialfraction x/(x+2)
partialfraction\:\frac{x}{x+2}
derivative of 1/((1+e^{-x)})
\frac{d}{dx}(\frac{1}{(1+e^{-x})})
integral of (cos(2x))/x
\int\:\frac{\cos(2x)}{x}dx
integral of 2sin(x)+5
\int\:2\sin(x)+5dx
derivative of (e^x)/(x-1)
derivative\:\frac{e^{x}}{x-1}
integral of 3cos(3t)
\int\:3\cos(3t)dt
limit as x approaches 2 of (2x-3)/(x+1)
\lim\:_{x\to\:2}(\frac{2x-3}{x+1})
slope of (3,1),(-2,-2)
slope\:(3,1),(-2,-2)
sum from n=0 to infinity of (nx)^n
\sum\:_{n=0}^{\infty\:}(nx)^{n}
integral of 4/3 x^3
\int\:\frac{4}{3}x^{3}dx
area y=x^2,y=2x+6
area\:y=x^{2},y=2x+6
sin(2x)dx+cos(8y)dy=0,y(pi/2)= pi/8
\sin(2x)dx+\cos(8y)dy=0,y(\frac{π}{2})=\frac{π}{8}
laplacetransform 2cos(3t)
laplacetransform\:2\cos(3t)
integral from 1 to 2 of x^4+1/(4x^4)
\int\:_{1}^{2}x^{4}+\frac{1}{4x^{4}}dx
integral from 0 to 5 of xsqrt(25-x^2)
\int\:_{0}^{5}x\sqrt{25-x^{2}}dx
derivative of 15cos(3t)
derivative\:15\cos(3t)
(5dx)/(dt)=x^2
\frac{5dx}{dt}=x^{2}
sum from n=0 to infinity of q^{2n}
\sum\:_{n=0}^{\infty\:}q^{2n}
limit as x approaches 0 of 1/(x+1)
\lim\:_{x\to\:0}(\frac{1}{x+1})
derivative of x^{0.5}y^{0.5}
\frac{d}{dx}(x^{0.5}y^{0.5})
(\partial)/(\partial x)(3e^{3x+4y}cos(5z))
\frac{\partial\:}{\partial\:x}(3e^{3x+4y}\cos(5z))
(6+x)y^'=5y
(6+x)y^{\prime\:}=5y
integral of 16xln(3x)
\int\:16x\ln(3x)dx
integral of ((1+x))/(1+x^2)
\int\:\frac{(1+x)}{1+x^{2}}dx
area x=-2,x=1,y=2x^2+12,y=0
area\:x=-2,x=1,y=2x^{2}+12,y=0
tangent of f(x)=sqrt(5x+11),(5,6)
tangent\:f(x)=\sqrt{5x+11},(5,6)
f(x)= 3/(x^2)
f(x)=\frac{3}{x^{2}}
derivative of f(x)=sqrt(3)(x^3-x^2)
derivative\:f(x)=\sqrt{3}(x^{3}-x^{2})
integral of (ln(x^3))
\int\:(\ln(x^{3}))dx
integral of 1/(2x-2)
\int\:\frac{1}{2x-2}dx
integral of 2cos^2(4x)sin(4x)
\int\:2\cos^{2}(4x)\sin(4x)dx
(\partial)/(\partial x)((x^2+y^2+z^2)^{1/2})
\frac{\partial\:}{\partial\:x}((x^{2}+y^{2}+z^{2})^{\frac{1}{2}})
limit as x approaches infinity of sec(x)
\lim\:_{x\to\:\infty\:}(\sec(x))
tangent of f(x)=5sqrt(x),\at x=4,x=9
tangent\:f(x)=5\sqrt{x},\at\:x=4,x=9
limit as x approaches-3-of (3-x)/(9-x^2)
\lim\:_{x\to\:-3-}(\frac{3-x}{9-x^{2}})
derivative of (\sqrt[3]{x}/(x-6))
\frac{d}{dx}(\frac{\sqrt[3]{x}}{x-6})
derivative of f(x)=4x^{3/2}
derivative\:f(x)=4x^{\frac{3}{2}}
taylor ln(1-x),0
taylor\:\ln(1-x),0
integral of x(3x+1)^7
\int\:x(3x+1)^{7}dx
laplacetransform (t+5)^3
laplacetransform\:(t+5)^{3}
derivative of (ln(x)/(x^{13)})
\frac{d}{dx}(\frac{\ln(x)}{x^{13}})
derivative of (10)/x
derivative\:\frac{10}{x}
limit as x approaches a of (x-1)/(3x+6)
\lim\:_{x\to\:a}(\frac{x-1}{3x+6})
integral of (sqrt(x)ln(x))
\int\:(\sqrt{x}\ln(x))dx
derivative of pi{r}(x(x)^2h)
\frac{d}{dx}(π{r}(x)(x)^{2}h)
(dy)/(dx)=(3x)/(2y)
\frac{dy}{dx}=\frac{3x}{2y}
integral of e^xln(e^x+1)
\int\:e^{x}\ln(e^{x}+1)dx
integral of (x^2)/((9-x^2)^{-3/2)}
\int\:\frac{x^{2}}{(9-x^{2})^{-\frac{3}{2}}}dx
derivative of 20-20*2^{-x}
\frac{d}{dx}(20-20\cdot\:2^{-x})
derivative of Ae^{5x}
\frac{d}{dx}(Ae^{5x})
y^'-(2/x y)=((y^3)/(x^3)),y(1)=1
y^{\prime\:}-(\frac{2}{x}y)=(\frac{y^{3}}{x^{3}}),y(1)=1
laplacetransform sin(-3t)
laplacetransform\:\sin(-3t)
integral of cos(t)e^{-st}
\int\:\cos(t)e^{-st}dt
limit as x approaches+0 of (sin(x^2))/x
\lim\:_{x\to\:+0}(\frac{\sin(x^{2})}{x})
sum from n=0 to infinity of 7^{-n}
\sum\:_{n=0}^{\infty\:}7^{-n}
derivative of y=(4x^2+x)(x-x^2)
derivative\:y=(4x^{2}+x)(x-x^{2})
derivative of (2+x/(x-1))
\frac{d}{dx}(\frac{2+x}{x-1})
limit as x approaches 3 of+(-1)
\lim\:_{x\to\:3}(+(-1))
d/(dt)(e^{7t}e^{4it})
\frac{d}{dt}(e^{7t}e^{4it})
y^'+2/x y=(1-x)(y^2)
y^{\prime\:}+\frac{2}{x}y=(1-x)(y^{2})
(\partial)/(\partial x)(arctan(xy^2))
\frac{\partial\:}{\partial\:x}(\arctan(xy^{2}))
integral of (1-cos(2x))/2
\int\:\frac{1-\cos(2x)}{2}dx
integral of+x^2sec^2(x^3+1)
\int\:+x^{2}\sec^{2}(x^{3}+1)dx
(\partial)/(\partial x)(x^3(1+y)+z^2)
\frac{\partial\:}{\partial\:x}(x^{3}(1+y)+z^{2})
derivative of (x^2/((5+x)))
\frac{d}{dx}(\frac{x^{2}}{(5+x)})
join arctan(x)-pi/4
join\:\arctan(x)-\frac{π}{4}
(\partial)/(\partial x)((x^2)/(1+y^2))
\frac{\partial\:}{\partial\:x}(\frac{x^{2}}{1+y^{2}})
limit as x approaches 35 of (x^2)/5-7/x
\lim\:_{x\to\:35}(\frac{x^{2}}{5}-\frac{7}{x})
derivative of-x^2-4x-2
\frac{d}{dx}(-x^{2}-4x-2)
derivative of (x^2+1/x)
\frac{d}{dx}(\frac{x^{2}+1}{x})
derivative of 1/(ln^2(cos(sqrt(3x))))
\frac{d}{dx}(\frac{1}{\ln^{2}(\cos(\sqrt{3x}))})
sum from n=1 to infinity of (-5)^n
\sum\:_{n=1}^{\infty\:}(-5)^{n}
integral of cosh(0)
\int\:\cosh(0)
integral of (3cos(2θ))
\int\:(3\cos(2θ))dθ
integral of x/((y^2+x^2)^{3/2)}
\int\:\frac{x}{(y^{2}+x^{2})^{\frac{3}{2}}}dx
area x^2,-x+5,0
area\:x^{2},-x+5,0
derivative of (8x^3-2x+9)/x
derivative\:\frac{8x^{3}-2x+9}{x}
(\partial)/(\partial u)(u/(u+v))
\frac{\partial\:}{\partial\:u}(\frac{u}{u+v})
derivative of (x-2)(3x+3)
derivative\:(x-2)(3x+3)
1
..
739
740
741
742
743
..
2459