Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
f(x)=ln(1+2x)
f(x)=\ln(1+2x)
d/(dt)(1/(t+1))
\frac{d}{dt}(\frac{1}{t+1})
y-y^'(x-10)=x
y-y^{\prime\:}(x-10)=x
integral from 0 to pi/3 of tan^2(x)
\int\:_{0}^{\frac{π}{3}}\tan^{2}(x)dx
tangent of y=2x^3-x^2+2,(1,3)
tangent\:y=2x^{3}-x^{2}+2,(1,3)
integral of 1-4x^2
\int\:1-4x^{2}dx
limit as x approaches 0 of 1/x-1/(x^2+1)
\lim\:_{x\to\:0}(\frac{1}{x}-\frac{1}{x^{2}+1})
integral of 1/(sqrt(1-25x^2))
\int\:\frac{1}{\sqrt{1-25x^{2}}}dx
tangent of f(x)=(x^3+x^2+6)/x ,\at x=1
tangent\:f(x)=\frac{x^{3}+x^{2}+6}{x},\at\:x=1
(\partial)/(\partial x)(3x^4y^8+7x^5y^6)
\frac{\partial\:}{\partial\:x}(3x^{4}y^{8}+7x^{5}y^{6})
integral of 7(1+tan^2(a))
\int\:7(1+\tan^{2}(a))da
derivative of h(x)= 8/x-2/(x^3)+1/(x^4)
derivative\:h(x)=\frac{8}{x}-\frac{2}{x^{3}}+\frac{1}{x^{4}}
y^{''}-14y^'+85y=0
y^{\prime\:\prime\:}-14y^{\prime\:}+85y=0
(\partial)/(\partial x)(4/x)
\frac{\partial\:}{\partial\:x}(\frac{4}{x})
derivative of-(12)/(s^5)
derivative\:-\frac{12}{s^{5}}
inverse oflaplace 2/(s^4)
inverselaplace\:\frac{2}{s^{4}}
integral of 2/((t+4)(t-1))
\int\:\frac{2}{(t+4)(t-1)}dt
derivative of (-2x/((x^2+1)^2))
\frac{d}{dx}(\frac{-2x}{(x^{2}+1)^{2}})
derivative of ln((x^{4/3}cos(x))/(7x+6))
derivative\:\ln(\frac{x^{\frac{4}{3}}\cos(x)}{7x+6})
y^{''''}+5y^{''}+4y=0
y^{\prime\:\prime\:\prime\:\prime\:}+5y^{\prime\:\prime\:}+4y=0
integral of 1/(a+v^2)
\int\:\frac{1}{a+v^{2}}dv
derivative of 3x^2-18x
\frac{d}{dx}(3x^{2}-18x)
derivative of f(x)=3x^3+2e^x
derivative\:f(x)=3x^{3}+2e^{x}
integral of cot^2(2x)
\int\:\cot^{2}(2x)dx
integral of (4-r^2)^{3/2}
\int\:(4-r^{2})^{\frac{3}{2}}dr
inverse oflaplace 1/(s^2+1)
inverselaplace\:\frac{1}{s^{2}+1}
d/(dt)(2cos(t))
\frac{d}{dt}(2\cos(t))
(\partial)/(\partial z)(ln(z))
\frac{\partial\:}{\partial\:z}(\ln(z))
(\partial)/(\partial x)(2y^7+8y^7x^7)
\frac{\partial\:}{\partial\:x}(2y^{7}+8y^{7}x^{7})
derivative of f(x)=cos(x)+sin(x)
derivative\:f(x)=\cos(x)+\sin(x)
(dx)/(dy)=4(x^2+1),x(pi/4)=1
\frac{dx}{dy}=4(x^{2}+1),x(\frac{π}{4})=1
t((dy)/(dt))=t^3+22t^3y
t(\frac{dy}{dt})=t^{3}+22t^{3}y
integral of (1+cos(θ))^2
\int\:(1+\cos(θ))^{2}dθ
area y= 1/x ,y=x,y= 1/4 x
area\:y=\frac{1}{x},y=x,y=\frac{1}{4}x
integral from 1 to 6 of (x^2+5)/(7x-x^2)
\int\:_{1}^{6}\frac{x^{2}+5}{7x-x^{2}}dx
laplacetransform (cos(7t))/(e^{5t)}
laplacetransform\:\frac{\cos(7t)}{e^{5t}}
x(dy)/(dx)+y=y^2x^2ln(x)
x\frac{dy}{dx}+y=y^{2}x^{2}\ln(x)
integral of y/(x^2+y^2)
\int\:\frac{y}{x^{2}+y^{2}}dx
inverse oflaplace (2s+12)/((s^2+2s+5))
inverselaplace\:\frac{2s+12}{(s^{2}+2s+5)}
(dx)/(dt)=sin(t)
\frac{dx}{dt}=\sin(t)
limit as x approaches infinity of 5-x
\lim\:_{x\to\:\infty\:}(5-x)
derivative of sin^2(pix)
\frac{d}{dx}(\sin^{2}(πx))
integral of x^{-8}
\int\:x^{-8}dx
tangent of y= x/(1+x^2),\at x=0
tangent\:y=\frac{x}{1+x^{2}},\at\:x=0
(dy)/(dt)=3y-1
\frac{dy}{dt}=3y-1
taylor e^x*sin(x)
taylor\:e^{x}\cdot\:\sin(x)
limit as x approaches 2 of-16x^2+76x
\lim\:_{x\to\:2}(-16x^{2}+76x)
longdivision ((x^5-5))/((x+1))
longdivision\:\frac{(x^{5}-5)}{(x+1)}
integral of 1/((1-y)^2)
\int\:\frac{1}{(1-y)^{2}}dy
derivative of xln(5)
\frac{d}{dx}(x\ln(5))
y^'(x-1)-2+3x+y=0
y^{\prime\:}(x-1)-2+3x+y=0
y^{''}+8y^'+19y=0,y(0)=1,y^'(0)=2
y^{\prime\:\prime\:}+8y^{\prime\:}+19y=0,y(0)=1,y^{\prime\:}(0)=2
integral of sin^{10}(7x)cos^3(7x)
\int\:\sin^{10}(7x)\cos^{3}(7x)dx
limit as x approaches 0+of 3^{1/x}
\lim\:_{x\to\:0+}(3^{\frac{1}{x}})
integral of 2x\sqrt[3]{1+x^2}
\int\:2x\sqrt[3]{1+x^{2}}dx
2ty'+(4+12t^3-120t^2)y=0
2ty\prime\:+(4+12t^{3}-120t^{2})y=0
inverse oflaplace (6s+3)/(s^2)
inverselaplace\:\frac{6s+3}{s^{2}}
integral of x/((x^2-7x+12))
\int\:\frac{x}{(x^{2}-7x+12)}dx
sum from n=0 to infinity of (x/2-3)^n
\sum\:_{n=0}^{\infty\:}(\frac{x}{2}-3)^{n}
derivative of (2{r}(xa^{{r}(x)x}+n)^{{p}(x)})
\frac{d}{dx}((2{r}(x)a^{{r}(x)x}+n)^{{p}(x)})
y^'=((-y^2))/(-(xy-x^3))
y^{\prime\:}=\frac{(-y^{2})}{-(xy-x^{3})}
(\partial)/(\partial y)(7sin(xy))
\frac{\partial\:}{\partial\:y}(7\sin(xy))
(\partial)/(\partial x)(3xe^{5xy})
\frac{\partial\:}{\partial\:x}(3xe^{5xy})
limit as x approaches-4 of x
\lim\:_{x\to\:-4}(x)
integral of (x^2)/((1+2x)^{1/3)}
\int\:\frac{x^{2}}{(1+2x)^{\frac{1}{3}}}dx
(\partial)/(\partial y)(e^{xy}y^2+x/y)
\frac{\partial\:}{\partial\:y}(e^{xy}y^{2}+\frac{x}{y})
(\partial)/(\partial r)(sqrt(r^2+s^2))
\frac{\partial\:}{\partial\:r}(\sqrt{r^{2}+s^{2}})
derivative of sqrt(sin(\sqrt{x)})
\frac{d}{dx}(\sqrt{\sin(\sqrt{x})})
derivative of x^2ln(x^3+2x-1)
\frac{d}{dx}(x^{2}\ln(x^{3}+2x-1))
derivative of y=(7-3x^3)^3
derivative\:y=(7-3x^{3})^{3}
integral of 16e^x
\int\:16e^{x}dx
derivative of (f(x))/(x^2+8)
derivative\:\frac{f(x)}{x^{2}+8}
(dx)/(dt)=0.3*10-x/(40)
\frac{dx}{dt}=0.3\cdot\:10-\frac{x}{40}
derivative of csc^2(θ)-4
derivative\:\csc^{2}(θ)-4
integral of 1/(3+sin^2(x)-cos^2(x))
\int\:\frac{1}{3+\sin^{2}(x)-\cos^{2}(x)}dx
derivative of h(x)= 1/(x^2+4x-21)
derivative\:h(x)=\frac{1}{x^{2}+4x-21}
integral of (sqrt(x)+1/(x^4))
\int\:(\sqrt{x}+\frac{1}{x^{4}})dx
derivative of 19
\frac{d}{dx}(19)
integral of ln((x+2)/(x+1))
\int\:\ln(\frac{x+2}{x+1})dx
area 7x,x*sqrt((15^2-x^2))
area\:7x,x\cdot\:\sqrt{(15^{2}-x^{2})}
derivative of e^{x^3+8x}
\frac{d}{dx}(e^{x^{3}+8x})
derivative of 2sqrt(1+sin(2t))
derivative\:2\sqrt{1+\sin(2t)}
integral of (x+1)sqrt(8x+9)
\int\:(x+1)\sqrt{8x+9}dx
taylor (2x)/((1+x^2)^2)
taylor\:\frac{2x}{(1+x^{2})^{2}}
derivative of x^3+5x+7
\frac{d}{dx}(x^{3}+5x+7)
laplacetransform e^{-t}+2e^{-2t}+te^{-3t}
laplacetransform\:e^{-t}+2e^{-2t}+te^{-3t}
integral of (5cosh(sqrt(x)))/(sqrt(x))
\int\:\frac{5\cosh(\sqrt{x})}{\sqrt{x}}dx
sum from n=0 to infinity of n/(2n^2+1)
\sum\:_{n=0}^{\infty\:}\frac{n}{2n^{2}+1}
limit as x approaches 4 of 7/(x-5)
\lim\:_{x\to\:4}(\frac{7}{x-5})
derivative of (x^2-5x+8(3x^2-2))
\frac{d}{dx}((x^{2}-5x+8)(3x^{2}-2))
integral of (5x^2+7)/(x 4/3)
\int\:\frac{5x^{2}+7}{x\frac{4}{3}}dx
limit as x approaches 0 of sin(pi/2-x)
\lim\:_{x\to\:0}(\sin(\frac{π}{2}-x))
derivative of log_{ln(x}(e))
\frac{d}{dx}(\log_{\ln(x)}(e))
integral of 3/x
\int\:\frac{3}{x}dx
limit as x approaches 0 of (x^3-1)/(x-1)
\lim\:_{x\to\:0}(\frac{x^{3}-1}{x-1})
area x=y^2,x=36-y^2
area\:x=y^{2},x=36-y^{2}
derivative of y= x/8-8/x
derivative\:y=\frac{x}{8}-\frac{8}{x}
integral from t to 1 of 1/(sqrt(x-1))
\int\:_{t}^{1}\frac{1}{\sqrt{x-1}}dx
derivative of (x-2/(x+3))
\frac{d}{dx}(\frac{x-2}{x+3})
(\partial)/(\partial x)(2xcos(x+2y))
\frac{\partial\:}{\partial\:x}(2x\cos(x+2y))
1
..
740
741
742
743
744
..
2459