Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial}{\partial s}(\frac{(r+s))/t)
\frac{\partial\:}{\partial\:s}(\frac{(r+s)}{t})
tangent of y=7ln((e^x+e^{-x})/2),(0,0)
tangent\:y=7\ln(\frac{e^{x}+e^{-x}}{2}),(0,0)
derivative of (x^2-2x+2e^x)
\frac{d}{dx}((x^{2}-2x+2)e^{x})
integral of 15sqrt(x)+3/(sqrt(x))
\int\:15\sqrt{x}+\frac{3}{\sqrt{x}}dx
derivative of y=x^2+2x+1
derivative\:y=x^{2}+2x+1
x(dy)/(dx)=y^2+1
x\frac{dy}{dx}=y^{2}+1
integral of (1/(4+x^2))
\int\:(\frac{1}{4+x^{2}})dx
((x^2)/(x^2-x-2))^'
(\frac{x^{2}}{x^{2}-x-2})^{\prime\:}
inverse oflaplace (2s-3)/((s+4)(s-3)^3)
inverselaplace\:\frac{2s-3}{(s+4)(s-3)^{3}}
integral of (15x^4)/(x^5+7)
\int\:\frac{15x^{4}}{x^{5}+7}dx
(\partial)/(\partial x)(-2ysin(x))
\frac{\partial\:}{\partial\:x}(-2y\sin(x))
integral of (sin(20t))/(sin(10t))
\int\:\frac{\sin(20t)}{\sin(10t)}dx
integral of (3t+8)^{2.8}
\int\:(3t+8)^{2.8}dt
integral of 3x^5-5x^9
\int\:3x^{5}-5x^{9}dx
dy=2t(y^2+9)dt
dy=2t(y^{2}+9)dt
sum from n=1 to infinity of 1/(n^{4/3)}
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{\frac{4}{3}}}
(\partial)/(\partial x)(3x+6y)
\frac{\partial\:}{\partial\:x}(3x+6y)
limit as x approaches 0-of 3/(x^2)
\lim\:_{x\to\:0-}(\frac{3}{x^{2}})
area y=x^2,y=x+2,y=0
area\:y=x^{2},y=x+2,y=0
integral of (x+3)/(x^2+9)
\int\:\frac{x+3}{x^{2}+9}dx
derivative of 6sqrt(t)-4t^3+9
derivative\:6\sqrt{t}-4t^{3}+9
integral of (16x^3)/(sqrt(4-x^2))
\int\:\frac{16x^{3}}{\sqrt{4-x^{2}}}dx
integral of-x+4
\int\:-x+4dx
derivative of xsqrt(2x+1)
derivative\:x\sqrt{2x+1}
(x+y)^2dx+(2xy+x^2-4)dy=0,y(1)=1
(x+y)^{2}dx+(2xy+x^{2}-4)dy=0,y(1)=1
integral of xsin(3)x^2
\int\:x\sin(3)x^{2}dx
y^'-4y=0
y^{\prime\:}-4y=0
integral of xcos(8x)
\int\:x\cos(8x)dx
integral of cos((npix)/1)
\int\:\cos(\frac{nπx}{1})dx
limit as x approaches 4-of (5x)/(x^2-4x)
\lim\:_{x\to\:4-}(\frac{5x}{x^{2}-4x})
integral of (15)/(1-cos(5x))
\int\:\frac{15}{1-\cos(5x)}dx
sum from n=1 to infinity of (7n)/(6n+1)
\sum\:_{n=1}^{\infty\:}\frac{7n}{6n+1}
derivative of 6x^5
derivative\:6x^{5}
integral of (sec(θ)tan(θ))/(sec^2(θ)-sec(θ))
\int\:\frac{\sec(θ)\tan(θ)}{\sec^{2}(θ)-\sec(θ)}dθ
integral of (a+x-x^2)
\int\:(a+x-x^{2})dx
integral of 7x^{2/5}+8x^{-4/5}
\int\:7x^{\frac{2}{5}}+8x^{-\frac{4}{5}}dx
(\partial)/(\partial x)(((2x-y))/(5x+3y))
\frac{\partial\:}{\partial\:x}(\frac{(2x-y)}{5x+3y})
x^2y^{''}+xy^'-y=ln(x)
x^{2}y^{\prime\:\prime\:}+xy^{\prime\:}-y=\ln(x)
integral of x/(1-2x^2)
\int\:\frac{x}{1-2x^{2}}dx
derivative of 1/(1+24e^{-0.28x})
\frac{d}{dx}(\frac{1}{1+24e^{-0.28x}})
integral from 2 to 4 of x^2
\int\:_{2}^{4}x^{2}dx
integral from 1 to 4 of (3x^3+x+1)
\int\:_{1}^{4}(3x^{3}+x+1)dx
derivative of 3/(8x^{5/2})
\frac{d}{dx}(\frac{3}{8x^{\frac{5}{2}}})
y^{''}+25y=3sec(5t)
y^{\prime\:\prime\:}+25y=3\sec(5t)
(\partial)/(\partial y)(ln(1+xy)-z)
\frac{\partial\:}{\partial\:y}(\ln(1+xy)-z)
(\partial)/(\partial θ)(ρcos(φ))
\frac{\partial\:}{\partial\:θ}(ρ\cos(φ))
limit as x approaches 5 of 2x-3x+4
\lim\:_{x\to\:5}(2x-3x+4)
integral of (y^2+38y+361)/((y^2+361)^2)
\int\:\frac{y^{2}+38y+361}{(y^{2}+361)^{2}}dy
limit as x approaches 0-of 8+7/x
\lim\:_{x\to\:0-}(8+\frac{7}{x})
integral of (3r^2)/(r+9)
\int\:\frac{3r^{2}}{r+9}dr
integral of (9x^8-8/(x^8))
\int\:(9x^{8}-\frac{8}{x^{8}})dx
limit as x approaches 2 of 2x^2-2x
\lim\:_{x\to\:2}(2x^{2}-2x)
integral of x^2cot(x^3)
\int\:x^{2}\cot(x^{3})dx
(\partial)/(\partial x)((3x)/(4y))
\frac{\partial\:}{\partial\:x}(\frac{3x}{4y})
tangent of 3x+5/x
tangent\:3x+\frac{5}{x}
derivative of 2^{tan(4x})
\frac{d}{dx}(2^{\tan(4x)})
(dy)/(dx)=y^2-4
\frac{dy}{dx}=y^{2}-4
derivative of-x/((1-x^2^{3/2)})
\frac{d}{dx}(-\frac{x}{(1-x^{2})^{\frac{3}{2}}})
tangent of f(x)=x^2-1,(-1,0)
tangent\:f(x)=x^{2}-1,(-1,0)
integral from 0 to pi of 8cos^4(x)sin(x)
\int\:_{0}^{π}8\cos^{4}(x)\sin(x)dx
integral of 3x^2+1
\int\:3x^{2}+1dx
derivative of 3/(\sqrt[3]{x^4})
\frac{d}{dx}(\frac{3}{\sqrt[3]{x^{4}}})
derivative of x/(sqrt(x^2+1)-1)
\frac{d}{dx}(\frac{x}{\sqrt{x^{2}+1}}-1)
(dy)/(dx)=(x^2y-y)/(y+1)
\frac{dy}{dx}=\frac{x^{2}y-y}{y+1}
integral of 1/18 x
\int\:\frac{1}{18}xdx
derivative of-4x^3-sin(x)
\frac{d}{dx}(-4x^{3}-\sin(x))
limit as x approaches 1 of |x+1|
\lim\:_{x\to\:1}(\left|x+1\right|)
integral of ((e^{-1/x}))/(x^2)
\int\:\frac{(e^{-\frac{1}{x}})}{x^{2}}dx
integral of (cos(x))/((sin(x)-1)^2)
\int\:\frac{\cos(x)}{(\sin(x)-1)^{2}}dx
(\partial)/(\partial x)(x^2+y^2(1-x)^3)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}(1-x)^{3})
(\partial)/(\partial x)(x/(1-x))
\frac{\partial\:}{\partial\:x}(\frac{x}{1-x})
integral of (3x-4)/((x-2)(x^2+1))
\int\:\frac{3x-4}{(x-2)(x^{2}+1)}dx
integral of (x^2-16)/(x-4)
\int\:\frac{x^{2}-16}{x-4}dx
integral of 1/(5-y)
\int\:\frac{1}{5-y}dy
integral of (6x^3+4x^2-46x-30)/(x^2-9)
\int\:\frac{6x^{3}+4x^{2}-46x-30}{x^{2}-9}dx
integral from 0 to infinity of e^{-2x+1}
\int\:_{0}^{\infty\:}e^{-2x+1}dx
(dv)/(dt)+(5.4)/(59)*v=-9.81
\frac{dv}{dt}+\frac{5.4}{59}\cdot\:v=-9.81
64y^{''}-16y^'+y=0
64y^{\prime\:\prime\:}-16y^{\prime\:}+y=0
integral from-1 to 4 of 3x-(x^2-4)
\int\:_{-1}^{4}3x-(x^{2}-4)dx
tangent of f(x)=-x^3,\at x=1
tangent\:f(x)=-x^{3},\at\:x=1
integral of 9x^4(x^5+2)^8
\int\:9x^{4}(x^{5}+2)^{8}dx
derivative of-2e^{-x^2}
derivative\:-2e^{-x^{2}}
derivative of y=(csc(4x))/(ln(x))
derivative\:y=\frac{\csc(4x)}{\ln(x)}
x^2(d^2y)/(dx^2)+4x(dy)/(dx)+2y=8x
x^{2}\frac{d^{2}y}{dx^{2}}+4x\frac{dy}{dx}+2y=8x
tangent of y=x^2-8
tangent\:y=x^{2}-8
integral from-infinity to 1 of xe^{2x}
\int\:_{-\infty\:}^{1}xe^{2x}dx
integral of sqrt(x^2-a^2)
\int\:\sqrt{x^{2}-a^{2}}dx
inverse oflaplace-1/(4s)
inverselaplace\:-\frac{1}{4s}
derivative of f(x)=x^{pi^2}+(pi^2)^x
derivative\:f(x)=x^{π^{2}}+(π^{2})^{x}
sum from n=1 to infinity of ln(1/(1+1))
\sum\:_{n=1}^{\infty\:}\ln(\frac{1}{1+1})
(\partial)/(\partial y)(-xy^2+xy)
\frac{\partial\:}{\partial\:y}(-xy^{2}+xy)
(\partial)/(\partial x)(x^3ln(y^2))
\frac{\partial\:}{\partial\:x}(x^{3}\ln(y^{2}))
limit as x approaches 3+of 4x-a+b
\lim\:_{x\to\:3+}(4x-a+b)
area |x|,5-|x|
area\:\left|x\right|,5-\left|x\right|
inverse oflaplace ((72))/((4800+88s))
inverselaplace\:\frac{(72)}{(4800+88s)}
sum from n=4 to infinity of 1/(2^n)
\sum\:_{n=4}^{\infty\:}\frac{1}{2^{n}}
integral from 1 to 6 of (x^2+2)/(7x-x^2)
\int\:_{1}^{6}\frac{x^{2}+2}{7x-x^{2}}dx
integral of 1/(sec(θ))
\int\:\frac{1}{\sec(θ)}dθ
x+x(y^')2-1=0
x+x(y^{\prime\:})2-1=0
y^{''}+2y^'=3
y^{\prime\:\prime\:}+2y^{\prime\:}=3
1
..
816
817
818
819
820
..
2459