Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=(x-2)^2+5
inverse\:f(x)=(x-2)^{2}+5
domain of \sqrt[3]{x^2+5x+6}
domain\:\sqrt[3]{x^{2}+5x+6}
domain of f(x)=(x+1)/(2x+sqrt(39+x))
domain\:f(x)=\frac{x+1}{2x+\sqrt{39+x}}
monotone x^3(x+5)^2+5
monotone\:x^{3}(x+5)^{2}+5
parity ln(tan(x)+sec(x))
parity\:\ln(\tan(x)+\sec(x))
domain of f(x)= 1/(sqrt(x-6))
domain\:f(x)=\frac{1}{\sqrt{x-6}}
asymptotes of (6+x^4)/(x^2-x^4)
asymptotes\:\frac{6+x^{4}}{x^{2}-x^{4}}
asymptotes of f(x)=arctan((x^2)/(x+7))
asymptotes\:f(x)=\arctan(\frac{x^{2}}{x+7})
midpoint (-1,-9),(6,6)
midpoint\:(-1,-9),(6,6)
asymptotes of f(x)=(3-x^4)/(x^3+x^2)
asymptotes\:f(x)=\frac{3-x^{4}}{x^{3}+x^{2}}
range of f(x)=sqrt((x+5)/(x-2))
range\:f(x)=\sqrt{\frac{x+5}{x-2}}
inverse of f(x)=(2x)/(3-x)
inverse\:f(x)=\frac{2x}{3-x}
domain of f(x)=(7x-3)/(7x)
domain\:f(x)=\frac{7x-3}{7x}
asymptotes of f(x)=(x^2+x-2)/(2x^2-2)
asymptotes\:f(x)=\frac{x^{2}+x-2}{2x^{2}-2}
domain of f(x)=sqrt(8x+5)
domain\:f(x)=\sqrt{8x+5}
domain of y=x^2-4x+4
domain\:y=x^{2}-4x+4
inflection 3x^4-16x^3+18x^2
inflection\:3x^{4}-16x^{3}+18x^{2}
intercepts of f(x)=2(x-1)(x+2)(x-3)
intercepts\:f(x)=2(x-1)(x+2)(x-3)
slope of y=(5x-8)/2
slope\:y=\frac{5x-8}{2}
intercepts of 1/(x+3)
intercepts\:\frac{1}{x+3}
amplitude of-3cos(2x)-2.5
amplitude\:-3\cos(2x)-2.5
domain of (-3)/(2t^{3/2)}
domain\:\frac{-3}{2t^{\frac{3}{2}}}
inverse of f(x)=(7-x)/4
inverse\:f(x)=\frac{7-x}{4}
asymptotes of f(x)=3tan(pix)
asymptotes\:f(x)=3\tan(πx)
inverse of f(x)=2\sqrt[3]{1/2}(x-4)+3
inverse\:f(x)=2\sqrt[3]{\frac{1}{2}}(x-4)+3
intercepts of (x^2+4x-5)/(x^2+x-2)
intercepts\:\frac{x^{2}+4x-5}{x^{2}+x-2}
asymptotes of f(x)= x/(1+x^2+x)
asymptotes\:f(x)=\frac{x}{1+x^{2}+x}
range of (x^2-6x+12)/(x-4)
range\:\frac{x^{2}-6x+12}{x-4}
intercepts of f(x)=sqrt(x-3)
intercepts\:f(x)=\sqrt{x-3}
inflection y=(x+8)/x
inflection\:y=\frac{x+8}{x}
inverse of f(x)= 2/5 x-4
inverse\:f(x)=\frac{2}{5}x-4
domain of f(x)=x^3+8
domain\:f(x)=x^{3}+8
domain of f(x)= 6/x+9
domain\:f(x)=\frac{6}{x}+9
inverse of f(x)=x-11
inverse\:f(x)=x-11
asymptotes of f(x)=-log_{3}(x)+2
asymptotes\:f(x)=-\log_{3}(x)+2
inverse of y=-5x
inverse\:y=-5x
domain of f(x)=x^2+3x+5
domain\:f(x)=x^{2}+3x+5
domain of f(x)=-x^2+2x-6
domain\:f(x)=-x^{2}+2x-6
intercepts of f(x)=x^2-7
intercepts\:f(x)=x^{2}-7
critical f(x)=x^3+3x^2-9x+3
critical\:f(x)=x^{3}+3x^{2}-9x+3
slope ofintercept 2x-5y=7
slopeintercept\:2x-5y=7
domain of f(x)=\sqrt[3]{2x-1}
domain\:f(x)=\sqrt[3]{2x-1}
inverse of 6/(x+4)
inverse\:\frac{6}{x+4}
asymptotes of f(x)=4(1/3)^x
asymptotes\:f(x)=4(\frac{1}{3})^{x}
domain of (x^2)/(x+1)
domain\:\frac{x^{2}}{x+1}
parallel y=4x+2
parallel\:y=4x+2
extreme f(x)=x^2+1
extreme\:f(x)=x^{2}+1
perpendicular 5x+7y=9
perpendicular\:5x+7y=9
inverse of f(x)=(x+2)/4
inverse\:f(x)=\frac{x+2}{4}
monotone e^{-1/(x^2)}
monotone\:e^{-\frac{1}{x^{2}}}
midpoint (3,-1),(-1,9)
midpoint\:(3,-1),(-1,9)
inverse of f(x)=x^2+12x+34
inverse\:f(x)=x^{2}+12x+34
extreme f(x)=3-x
extreme\:f(x)=3-x
domain of f(x)=(x+1)/(x-1)
domain\:f(x)=\frac{x+1}{x-1}
asymptotes of sqrt(x-1)
asymptotes\:\sqrt{x-1}
domain of f(t)=(arctan(t),(1-e^{-2t})/t)
domain\:f(t)=(\arctan(t),\frac{1-e^{-2t}}{t})
inverse of f(x)=log_{2}(x-1)
inverse\:f(x)=\log_{2}(x-1)
range of sqrt(x+1)+sqrt(x+2)
range\:\sqrt{x+1}+\sqrt{x+2}
critical f(x)=(x^4-1)/(x^3)
critical\:f(x)=\frac{x^{4}-1}{x^{3}}
inverse of f(x)=e^{x^3-7}+1
inverse\:f(x)=e^{x^{3}-7}+1
domain of (63)/(x(x+9))
domain\:\frac{63}{x(x+9)}
inverse of f(x)=8^x
inverse\:f(x)=8^{x}
intercepts of f(x)=11x^2+4y=44
intercepts\:f(x)=11x^{2}+4y=44
slope ofintercept 4x-3y=21
slopeintercept\:4x-3y=21
range of 3sin(2x-pi/4)+1
range\:3\sin(2x-\frac{π}{4})+1
domain of f(x)=log_{10}(x^3-x)
domain\:f(x)=\log_{10}(x^{3}-x)
domain of f(x)=sqrt(5x-5)
domain\:f(x)=\sqrt{5x-5}
inverse of f(x)=(x-2)^4
inverse\:f(x)=(x-2)^{4}
symmetry 2x^2-x+2
symmetry\:2x^{2}-x+2
extreme f(x)=-x^3+9x^2-53
extreme\:f(x)=-x^{3}+9x^{2}-53
inverse of f(x)=-3x^2+3
inverse\:f(x)=-3x^{2}+3
domain of f(x)=(8x)/(x^2-9)
domain\:f(x)=\frac{8x}{x^{2}-9}
domain of f(x)=3*0.2^x
domain\:f(x)=3\cdot\:0.2^{x}
domain of (x^2+3)^2
domain\:(x^{2}+3)^{2}
parity f(x)=sqrt(25-x^2)+sqrt(x-9)
parity\:f(x)=\sqrt{25-x^{2}}+\sqrt{x-9}
domain of f(x)=\sqrt[3]{x^3+9}
domain\:f(x)=\sqrt[3]{x^{3}+9}
domain of g(x)=3^{x-3}
domain\:g(x)=3^{x-3}
domain of sqrt(4-t^2)
domain\:\sqrt{4-t^{2}}
range of x/(3x-1)
range\:\frac{x}{3x-1}
inverse of 1/(x-a)
inverse\:\frac{1}{x-a}
slope of 4x+6
slope\:4x+6
extreme f(x)=3x^3-3x^2-4
extreme\:f(x)=3x^{3}-3x^{2}-4
inverse of f(x)=sqrt(x+1)-3
inverse\:f(x)=\sqrt{x+1}-3
domain of f(x)=\sqrt[5]{x^2-x-2}
domain\:f(x)=\sqrt[5]{x^{2}-x-2}
inflection x-(256)/(x^2)
inflection\:x-\frac{256}{x^{2}}
inflection x+1/x
inflection\:x+\frac{1}{x}
asymptotes of x(x+1)
asymptotes\:x(x+1)
slope ofintercept x=-45y+2
slopeintercept\:x=-45y+2
distance (-5,2),(5,0)
distance\:(-5,2),(5,0)
slope of y-9=-1/3 (x-8)
slope\:y-9=-\frac{1}{3}(x-8)
inverse of f(x)=x^2-10x,x>= 5
inverse\:f(x)=x^{2}-10x,x\ge\:5
domain of f(x)=ln(x(x-2))
domain\:f(x)=\ln(x(x-2))
perpendicular y=-6x+3,(-6,7)
perpendicular\:y=-6x+3,(-6,7)
domain of 1/(1+x)
domain\:\frac{1}{1+x}
intercepts of f(x)=x^2-4x+7
intercepts\:f(x)=x^{2}-4x+7
domain of f(x)= 1/(x^2-3x+2)
domain\:f(x)=\frac{1}{x^{2}-3x+2}
inverse of f(x)=ln(3x+1)
inverse\:f(x)=\ln(3x+1)
domain of f(x)=(sqrt(5+x))/(5-x)
domain\:f(x)=\frac{\sqrt{5+x}}{5-x}
domain of x+6
domain\:x+6
intercepts of f(x)=x^2+y^2=25x^2+y^2=25
intercepts\:f(x)=x^{2}+y^{2}=25x^{2}+y^{2}=25
1
..
186
187
188
189
190
..
1324