Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of y=10^{x/5}
inverse\:y=10^{\frac{x}{5}}
domain of 1/(3x+9)
domain\:\frac{1}{3x+9}
critical f(x)=x^3+3x^2-144x
critical\:f(x)=x^{3}+3x^{2}-144x
midpoint (1,-19),(1,9)
midpoint\:(1,-19),(1,9)
domain of (x-2)/(2x^2)
domain\:\frac{x-2}{2x^{2}}
domain of (2(x+6))/(3x)
domain\:\frac{2(x+6)}{3x}
simplify (-1.1)(-4)
simplify\:(-1.1)(-4)
domain of f(x)=sqrt(169-x^2)
domain\:f(x)=\sqrt{169-x^{2}}
line y=-2
line\:y=-2
slope of 5x+2y=9
slope\:5x+2y=9
domain of f(x)=arcsin((x+2)/(5-x))
domain\:f(x)=\arcsin(\frac{x+2}{5-x})
inverse of f(x)=1650((1.022))^t
inverse\:f(x)=1650((1.022))^{t}
inverse of 5/(sqrt(x))
inverse\:\frac{5}{\sqrt{x}}
domain of f(x)=(x-8)/(x^2+x-72)
domain\:f(x)=\frac{x-8}{x^{2}+x-72}
inverse of f(x)=((x+4))/(x-3)
inverse\:f(x)=\frac{(x+4)}{x-3}
extreme f(x)=x^2
extreme\:f(x)=x^{2}
slope ofintercept 1/2 y+2=0
slopeintercept\:\frac{1}{2}y+2=0
inverse of f(x)=sin(ln(x^3-2))
inverse\:f(x)=\sin(\ln(x^{3}-2))
inverse of (x-8)/7
inverse\:\frac{x-8}{7}
inverse of f(x)=x^4-8x^2+3
inverse\:f(x)=x^{4}-8x^{2}+3
extreme 0.8x^2+(72)/x
extreme\:0.8x^{2}+\frac{72}{x}
distance (4,-5),(-1,7)
distance\:(4,-5),(-1,7)
asymptotes of f(x)= 1/(1-e^x)
asymptotes\:f(x)=\frac{1}{1-e^{x}}
domain of f(x)=(3x+5)/((2x-7))
domain\:f(x)=\frac{3x+5}{(2x-7)}
range of f(x)= 5/x
range\:f(x)=\frac{5}{x}
range of sqrt(2x+3)
range\:\sqrt{2x+3}
slope of y=-3x+4
slope\:y=-3x+4
range of 1-x^2
range\:1-x^{2}
asymptotes of f(x)= 2/(x+2)+3
asymptotes\:f(x)=\frac{2}{x+2}+3
asymptotes of f(x)=(4x^2)/(x^2-4x+4)
asymptotes\:f(x)=\frac{4x^{2}}{x^{2}-4x+4}
asymptotes of f(x)=((-4))/((2x-5))
asymptotes\:f(x)=\frac{(-4)}{(2x-5)}
amplitude of 4cos(1/3 x+pi/4)+1
amplitude\:4\cos(\frac{1}{3}x+\frac{π}{4})+1
midpoint (-2,-3),(4,5)
midpoint\:(-2,-3),(4,5)
line (5,119),(10,239)
line\:(5,119),(10,239)
range of sqrt(x-1)+2
range\:\sqrt{x-1}+2
line y=3x-4
line\:y=3x-4
range of-2sin(x)
range\:-2\sin(x)
range of 1/x-1
range\:\frac{1}{x}-1
extreme f(x)=(ln(x))/(sqrt(x))
extreme\:f(x)=\frac{\ln(x)}{\sqrt{x}}
slope of m=-3
slope\:m=-3
midpoint (6,-6),(2,4)
midpoint\:(6,-6),(2,4)
inverse of f(x)=(2x-3)/(x+4)
inverse\:f(x)=\frac{2x-3}{x+4}
domain of ((x-6))/((x+5))
domain\:\frac{(x-6)}{(x+5)}
extreme f(x)=5x^7+2x^3+6
extreme\:f(x)=5x^{7}+2x^{3}+6
slope ofintercept 2x+2y=10
slopeintercept\:2x+2y=10
parity 2x*cot(x)
parity\:2x\cdot\:\cot(x)
asymptotes of (x+3)/(x-2)
asymptotes\:\frac{x+3}{x-2}
inverse of 155
inverse\:155
domain of f(x)=sqrt(30-5x)
domain\:f(x)=\sqrt{30-5x}
extreme f(x)=3x^2-2
extreme\:f(x)=3x^{2}-2
inverse of f(x)=(8x-1)/(2x+5)
inverse\:f(x)=\frac{8x-1}{2x+5}
inverse of f(x)=((x+9))/((x+1))
inverse\:f(x)=\frac{(x+9)}{(x+1)}
inflection 5x^2ln(x/4)
inflection\:5x^{2}\ln(\frac{x}{4})
slope ofintercept 8y-2x=-72
slopeintercept\:8y-2x=-72
asymptotes of f(x)= 1/((x-2)^2)
asymptotes\:f(x)=\frac{1}{(x-2)^{2}}
simplify (0.5)(2.1)
simplify\:(0.5)(2.1)
domain of f(x)=10-5/x
domain\:f(x)=10-\frac{5}{x}
inverse of f(x)=(x+4)/(x-3)
inverse\:f(x)=\frac{x+4}{x-3}
extreme f(x)=x^3-3x+2
extreme\:f(x)=x^{3}-3x+2
domain of f(x)=(x+3)/(x-3)
domain\:f(x)=\frac{x+3}{x-3}
slope ofintercept 2x+5y=7
slopeintercept\:2x+5y=7
domain of f(x)=\sqrt[5]{x-2}
domain\:f(x)=\sqrt[5]{x-2}
domain of sqrt(4x+3)
domain\:\sqrt{4x+3}
domain of f(x)=x^2-1,x>= 0
domain\:f(x)=x^{2}-1,x\ge\:0
extreme f(x)=-2x^3+3x^2
extreme\:f(x)=-2x^{3}+3x^{2}
domain of f(x)= 2/((sqrt(2x-5)))
domain\:f(x)=\frac{2}{(\sqrt{2x-5})}
inverse of f(x)=((2x+1))/(1-x)
inverse\:f(x)=\frac{(2x+1)}{1-x}
f(x)=y^2
f(x)=y^{2}
inverse of f(x)=(-x+5)/2
inverse\:f(x)=\frac{-x+5}{2}
inverse of-2/x
inverse\:-\frac{2}{x}
intercepts of f(x)=x^2+16x+61
intercepts\:f(x)=x^{2}+16x+61
domain of f(x)=x^3+7x^2+8x-16
domain\:f(x)=x^{3}+7x^{2}+8x-16
asymptotes of f(x)=(3x^2-75)/(x^2-5x)
asymptotes\:f(x)=\frac{3x^{2}-75}{x^{2}-5x}
perpendicular y= 1/2 x-1/6
perpendicular\:y=\frac{1}{2}x-\frac{1}{6}
domain of f(x)=(-1+x)(x-a)
domain\:f(x)=(-1+x)(x-a)
critical f(x)=xsqrt(25-x^2)
critical\:f(x)=x\sqrt{25-x^{2}}
symmetry y=x^2+5
symmetry\:y=x^{2}+5
monotone (4/10)^x
monotone\:(\frac{4}{10})^{x}
inverse of y=-2log_{2}(x)
inverse\:y=-2\log_{2}(x)
range of x/(9x-8)
range\:\frac{x}{9x-8}
domain of (6x)/(x-1)
domain\:\frac{6x}{x-1}
inverse of (3x^2+13x-25)/(x+6)
inverse\:\frac{3x^{2}+13x-25}{x+6}
asymptotes of f(x)=((x))/(x^2-1)
asymptotes\:f(x)=\frac{(x)}{x^{2}-1}
asymptotes of f(x)=-(2x)/(x+1)
asymptotes\:f(x)=-\frac{2x}{x+1}
domain of f(x)= 1/((x^3-2x^2-15x))
domain\:f(x)=\frac{1}{(x^{3}-2x^{2}-15x)}
inverse of f(x)=-1/2 sqrt(x+3),x>=-3
inverse\:f(x)=-\frac{1}{2}\sqrt{x+3},x\ge\:-3
slope ofintercept 8x+4y=12
slopeintercept\:8x+4y=12
shift cos(x+(3pi)/2)
shift\:\cos(x+\frac{3π}{2})
domain of x^3-3x^2+3x-1
domain\:x^{3}-3x^{2}+3x-1
inverse of f(x)=(3x)/(x-2)-11
inverse\:f(x)=\frac{3x}{x-2}-11
inverse of f(x)=4x-20
inverse\:f(x)=4x-20
asymptotes of y=(4+x^4)/(x^2-x^4)
asymptotes\:y=\frac{4+x^{4}}{x^{2}-x^{4}}
extreme y=(x-4)(3x+4)^3
extreme\:y=(x-4)(3x+4)^{3}
asymptotes of f(x)= 1/(x-5)+2
asymptotes\:f(x)=\frac{1}{x-5}+2
domain of (x+1)/(sqrt(x^2+1))
domain\:\frac{x+1}{\sqrt{x^{2}+1}}
inverse of f(x)= 1/(x-7)
inverse\:f(x)=\frac{1}{x-7}
simplify (1.1)(2.2)
simplify\:(1.1)(2.2)
symmetry x^2+8x+16
symmetry\:x^{2}+8x+16
amplitude of f(x)= 1/3 sin(x+pi/4)
amplitude\:f(x)=\frac{1}{3}\sin(x+\frac{π}{4})
domain of f(x)=(sqrt(x-3))/(x+2)
domain\:f(x)=\frac{\sqrt{x-3}}{x+2}
1
..
297
298
299
300
301
..
1324