Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
periodicity of y=sin(x-pi/2)
periodicity\:y=\sin(x-\frac{π}{2})
asymptotes of (9x+6)/(x-1)
asymptotes\:\frac{9x+6}{x-1}
domain of f(x)=sqrt(-(-64))
domain\:f(x)=\sqrt{-(-64)}
domain of f(x)= 5/x
domain\:f(x)=\frac{5}{x}
domain of f(x)=(5x)/(x^2-36)
domain\:f(x)=\frac{5x}{x^{2}-36}
range of 0.5x+10
range\:0.5x+10
line (-4,-4),(8,-4)
line\:(-4,-4),(8,-4)
inverse of y=-4x+9
inverse\:y=-4x+9
domain of f(x)=(6x)/(x+3)
domain\:f(x)=\frac{6x}{x+3}
monotone f(x)=(x-1)^2-4
monotone\:f(x)=(x-1)^{2}-4
domain of y=\sqrt[3]{x}-2
domain\:y=\sqrt[3]{x}-2
intercepts of f(x)=-4x^2-6x+2
intercepts\:f(x)=-4x^{2}-6x+2
critical f(x)=sqrt(x)
critical\:f(x)=\sqrt{x}
domain of f(x)=sqrt(t-9)
domain\:f(x)=\sqrt{t-9}
asymptotes of f(x)=(x^2+3)/(x^4+4x^2-5)
asymptotes\:f(x)=\frac{x^{2}+3}{x^{4}+4x^{2}-5}
domain of sqrt(6x+30)
domain\:\sqrt{6x+30}
domain of f(x)=x-4= 3/(y+1)
domain\:f(x)=x-4=\frac{3}{y+1}
range of-x^2-2x-5
range\:-x^{2}-2x-5
domain of-x^2-4x+5
domain\:-x^{2}-4x+5
range of sqrt(-x-1)
range\:\sqrt{-x-1}
domain of f(x)=(2x)/(x^2+2x+1)
domain\:f(x)=\frac{2x}{x^{2}+2x+1}
symmetry (x-1)^2-4
symmetry\:(x-1)^{2}-4
inverse of f(x)=(3x-1)/(2x+8)
inverse\:f(x)=\frac{3x-1}{2x+8}
extreme f(x)=5x^2-1
extreme\:f(x)=5x^{2}-1
extreme 1/(x^2+2x+2),-2<= x<= 2
extreme\:\frac{1}{x^{2}+2x+2},-2\le\:x\le\:2
slope of 3x-10y=20
slope\:3x-10y=20
midpoint (-1,4),(4,-2)
midpoint\:(-1,4),(4,-2)
f(x)=x^2+x
f(x)=x^{2}+x
parity y=sin(sqrt(cos(tan(pix))))
parity\:y=\sin(\sqrt{\cos(\tan(πx))})
distance (-4,5),(7,18)
distance\:(-4,5),(7,18)
extreme f(x)=(x-4)^2
extreme\:f(x)=(x-4)^{2}
symmetry x^2+y^2+6x-2y-15=0
symmetry\:x^{2}+y^{2}+6x-2y-15=0
domain of f(x)=sqrt(12+3x)
domain\:f(x)=\sqrt{12+3x}
midpoint (d,n),(0,0)
midpoint\:(d,n),(0,0)
simplify (12.3)(-9.1)
simplify\:(12.3)(-9.1)
range of f(x)=-3^x-1
range\:f(x)=-3^{x}-1
asymptotes of f(x)=(2x)/(sqrt(x^2+2))
asymptotes\:f(x)=\frac{2x}{\sqrt{x^{2}+2}}
distance (-5,-4),(-6,4)
distance\:(-5,-4),(-6,4)
inflection (2+x-x^2)/((x-1)^2)
inflection\:\frac{2+x-x^{2}}{(x-1)^{2}}
frequency 2cos(2x)-1
frequency\:2\cos(2x)-1
distance (-8,1),(-5,6)
distance\:(-8,1),(-5,6)
range of f(x)=3(1/2)^x
range\:f(x)=3(\frac{1}{2})^{x}
intercepts of f(x)=x^2+4x+2
intercepts\:f(x)=x^{2}+4x+2
slope of y-7=0
slope\:y-7=0
asymptotes of 1/((x-3)^2)
asymptotes\:\frac{1}{(x-3)^{2}}
asymptotes of 1/7 cot(pix)
asymptotes\:\frac{1}{7}\cot(πx)
line (-5,-8),(5,2)
line\:(-5,-8),(5,2)
critical 2x^3-18x^2+48x+220
critical\:2x^{3}-18x^{2}+48x+220
domain of 5x^2+31x-28
domain\:5x^{2}+31x-28
domain of x/(1+x)
domain\:\frac{x}{1+x}
range of x+5
range\:x+5
inverse of (x-3)^2+1
inverse\:(x-3)^{2}+1
vertices y=2(x+1)^2-8
vertices\:y=2(x+1)^{2}-8
monotone sqrt(25-x^2)
monotone\:\sqrt{25-x^{2}}
parity f(x)=sin(x)+cos(x)
parity\:f(x)=\sin(x)+\cos(x)
critical f(x)=x^4-32x^2+256
critical\:f(x)=x^{4}-32x^{2}+256
inverse of f(x)=7x^3-2
inverse\:f(x)=7x^{3}-2
intercepts of f(x)=4x^2-4x+21
intercepts\:f(x)=4x^{2}-4x+21
critical f(x)=-16t^2+60t+2
critical\:f(x)=-16t^{2}+60t+2
domain of f(x)=x^4+2x^3+2x^2+x
domain\:f(x)=x^{4}+2x^{3}+2x^{2}+x
monotone f(x)= 2/(x+5)
monotone\:f(x)=\frac{2}{x+5}
simplify (2.4)(4.4)
simplify\:(2.4)(4.4)
inflection (x^3)/(x^3+1)
inflection\:\frac{x^{3}}{x^{3}+1}
domain of e^{-x}-2
domain\:e^{-x}-2
intercepts of (-12x-40)/(9x+6)
intercepts\:\frac{-12x-40}{9x+6}
midpoint (-44,-21),(43,-32)
midpoint\:(-44,-21),(43,-32)
domain of f(x)=5x^2+7x-11
domain\:f(x)=5x^{2}+7x-11
domain of log_{3}(x^2-4x+3)
domain\:\log_{3}(x^{2}-4x+3)
perpendicular y= 3/2 x-4,(4,-2)
perpendicular\:y=\frac{3}{2}x-4,(4,-2)
parallel x=-5(1.4)
parallel\:x=-5(1.4)
asymptotes of 1/((x+2)(x-3))
asymptotes\:\frac{1}{(x+2)(x-3)}
y=2x^2
y=2x^{2}
monotone f(x)=x^2+2
monotone\:f(x)=x^{2}+2
intercepts of log_{4}(-2x+8)
intercepts\:\log_{4}(-2x+8)
inverse of f(x)=(x-1)^2,x<= 1
inverse\:f(x)=(x-1)^{2},x\le\:1
asymptotes of f(x)=(3x+3)/(x^2+x)
asymptotes\:f(x)=\frac{3x+3}{x^{2}+x}
inverse of f(x)=-5/3 x+5
inverse\:f(x)=-\frac{5}{3}x+5
intercepts of x^3+2x^2+9x+18
intercepts\:x^{3}+2x^{2}+9x+18
amplitude of f(x)=-3cos(x)
amplitude\:f(x)=-3\cos(x)
monotone f(x)=(e^x)/(x^2)
monotone\:f(x)=\frac{e^{x}}{x^{2}}
critical 0.1X^5-4X^3+150X+100
critical\:0.1X^{5}-4X^{3}+150X+100
extreme y=8x-ln(8x)
extreme\:y=8x-\ln(8x)
domain of 9/(x^2+2x)
domain\:\frac{9}{x^{2}+2x}
extreme f(x)=2x^3+6x^2-18x
extreme\:f(x)=2x^{3}+6x^{2}-18x
parity cos(x^2)+5cot(x)
parity\:\cos(x^{2})+5\cot(x)
intercepts of f(x)=(6x^2)/(x^2-4)
intercepts\:f(x)=\frac{6x^{2}}{x^{2}-4}
domain of f(x)=(x-3)/(x^2-4x-12)
domain\:f(x)=\frac{x-3}{x^{2}-4x-12}
symmetry x^2-4x+3
symmetry\:x^{2}-4x+3
asymptotes of f(x)= 5/(2x+3)
asymptotes\:f(x)=\frac{5}{2x+3}
slope ofintercept-5
slopeintercept\:-5
intercepts of f(x)=3x+2y=-6
intercepts\:f(x)=3x+2y=-6
domain of 5
domain\:5
domain of y=tan(pi/(10)x)
domain\:y=\tan(\frac{π}{10}x)
asymptotes of f(x)=(9x^2+7x)/(x^4-1)
asymptotes\:f(x)=\frac{9x^{2}+7x}{x^{4}-1}
domain of f(x)=-3/(sqrt(2-4x))
domain\:f(x)=-\frac{3}{\sqrt{2-4x}}
domain of f(x)=sqrt(4+x^2)
domain\:f(x)=\sqrt{4+x^{2}}
intercepts of f(x)=3x^4-4x^3-12x^2
intercepts\:f(x)=3x^{4}-4x^{3}-12x^{2}
line m=-10,(0,0)
line\:m=-10,(0,0)
midpoint (-1,5),(9,-1)
midpoint\:(-1,5),(9,-1)
asymptotes of f(x)=((x^2-2x))/(x^2-4)
asymptotes\:f(x)=\frac{(x^{2}-2x)}{x^{2}-4}
1
..
391
392
393
394
395
..
1324