Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
parity f(x)=x^4-4x^2-1
parity\:f(x)=x^{4}-4x^{2}-1
midpoint (-8,1),(-4,-9)
midpoint\:(-8,1),(-4,-9)
domain of f(x)=-3sqrt(x-3)-2
domain\:f(x)=-3\sqrt{x-3}-2
inverse of f(x)=-5x-1
inverse\:f(x)=-5x-1
inverse of f(x)=3(x+1)
inverse\:f(x)=3(x+1)
y=-2
y=-2
critical f(x)= 1/(x-7)-1/x
critical\:f(x)=\frac{1}{x-7}-\frac{1}{x}
inverse of e^{-x}
inverse\:e^{-x}
simplify (1.5)(5.1)
simplify\:(1.5)(5.1)
critical f(x)= x/(sqrt(x^2+1))
critical\:f(x)=\frac{x}{\sqrt{x^{2}+1}}
inverse of f(x)=-1/64 x^3
inverse\:f(x)=-\frac{1}{64}x^{3}
extreme f(x)=2x+((50)/x)
extreme\:f(x)=2x+(\frac{50}{x})
inverse of f(x)=\sqrt[3]{x+10}
inverse\:f(x)=\sqrt[3]{x+10}
extreme f(x)=-(x^2)/2+(x^3)/3
extreme\:f(x)=-\frac{x^{2}}{2}+\frac{x^{3}}{3}
domain of (x^2-4x)/(11)
domain\:\frac{x^{2}-4x}{11}
domain of f(x)=-x,x<0
domain\:f(x)=-x,x<0
inverse of f(x)= 2/(x-9)
inverse\:f(x)=\frac{2}{x-9}
inverse of f(x)=-3x^2+7
inverse\:f(x)=-3x^{2}+7
inverse of f(x)=(1+e^x)/(1-e^x)
inverse\:f(x)=\frac{1+e^{x}}{1-e^{x}}
intercepts of-25x+1000
intercepts\:-25x+1000
parity f(x)=2sin(x)cos(x)
parity\:f(x)=2\sin(x)\cos(x)
asymptotes of y=ln(e/x)
asymptotes\:y=\ln(\frac{e}{x})
parallel y=2x-3,(-7,-2)
parallel\:y=2x-3,(-7,-2)
y=-3x-2
y=-3x-2
shift 2sin(3x-pi)
shift\:2\sin(3x-π)
domain of f(x)=4x^2-7
domain\:f(x)=4x^{2}-7
line m=-1/4 ,(-2,5)
line\:m=-\frac{1}{4},(-2,5)
midpoint (2,-6),(4,6)
midpoint\:(2,-6),(4,6)
asymptotes of-x^3+12x-16
asymptotes\:-x^{3}+12x-16
extreme f(x)=x^2-1
extreme\:f(x)=x^{2}-1
range of f(x)=|x-6|
range\:f(x)=\left|x-6\right|
domain of sqrt(x)+sqrt(2-x)
domain\:\sqrt{x}+\sqrt{2-x}
domain of f(x)=-1/(2sqrt(1-x))
domain\:f(x)=-\frac{1}{2\sqrt{1-x}}
domain of 1/(\frac{1){sqrt(x)}}
domain\:\frac{1}{\frac{1}{\sqrt{x}}}
domain of y=sqrt(x^2+1)
domain\:y=\sqrt{x^{2}+1}
intercepts of (x^2+x-2)/(x^2+3x+2)
intercepts\:\frac{x^{2}+x-2}{x^{2}+3x+2}
domain of f(x)= x/(sqrt(x-4))
domain\:f(x)=\frac{x}{\sqrt{x-4}}
domain of f(x)=\sqrt[3]{x}+3
domain\:f(x)=\sqrt[3]{x}+3
parallel-1/4 x=-1,(-5,-8)
parallel\:-\frac{1}{4}x=-1,(-5,-8)
asymptotes of f(x)=(x^2-16)/(16x-32)
asymptotes\:f(x)=\frac{x^{2}-16}{16x-32}
domain of f(x)=(3x^2-8)/(sqrt(x^2+5x+6))
domain\:f(x)=\frac{3x^{2}-8}{\sqrt{x^{2}+5x+6}}
inflection f(x)=x
inflection\:f(x)=x
intercepts of f(x)=x^2-2x-8
intercepts\:f(x)=x^{2}-2x-8
range of |x|+|x-1|
range\:\left|x\right|+\left|x-1\right|
domain of f(x)=30
domain\:f(x)=30
asymptotes of f(x)=(x^2-3x-4)/(x-2)
asymptotes\:f(x)=\frac{x^{2}-3x-4}{x-2}
domain of f(x)= 3/(sqrt(x+5))
domain\:f(x)=\frac{3}{\sqrt{x+5}}
monotone (x^2(x+1))/(x+1)
monotone\:\frac{x^{2}(x+1)}{x+1}
frequency 3cos(pix)-2
frequency\:3\cos(πx)-2
intercepts of x^2-4x+1
intercepts\:x^{2}-4x+1
periodicity of cos(2x)
periodicity\:\cos(2x)
domain of sqrt((x-4)/(x-2))
domain\:\sqrt{\frac{x-4}{x-2}}
critical f(x)=(x-1)/(x+1)
critical\:f(x)=\frac{x-1}{x+1}
inverse of f(x)=((e^x+e^{-x}))/2
inverse\:f(x)=\frac{(e^{x}+e^{-x})}{2}
asymptotes of f(x)= 4/(x-8)-2
asymptotes\:f(x)=\frac{4}{x-8}-2
range of 2/(3x-1)
range\:\frac{2}{3x-1}
range of x^2(x+1)(x-3)
range\:x^{2}(x+1)(x-3)
intercepts of 5x^2+10x+6
intercepts\:5x^{2}+10x+6
domain of f(x)=2^x-3
domain\:f(x)=2^{x}-3
domain of (x^2+x+1)/(x^2-7x+12)
domain\:\frac{x^{2}+x+1}{x^{2}-7x+12}
range of g(x)=sin^2(x)
range\:g(x)=\sin^{2}(x)
slope ofintercept 4x+3y=0
slopeintercept\:4x+3y=0
intercepts of f(x)= 2/3 x-5
intercepts\:f(x)=\frac{2}{3}x-5
slope of 4+2x
slope\:4+2x
domain of (sqrt(x))/(2(sqrt(x))^2-5)
domain\:\frac{\sqrt{x}}{2(\sqrt{x})^{2}-5}
inverse of f(x)=log_{10}(x)-0.3
inverse\:f(x)=\log_{10}(x)-0.3
range of y=x^2-25
range\:y=x^{2}-25
asymptotes of (2x^2-12x+19)/(x^2-6x+9)
asymptotes\:\frac{2x^{2}-12x+19}{x^{2}-6x+9}
slope ofintercept y-343=-4/7 (x-64)
slopeintercept\:y-343=-\frac{4}{7}(x-64)
perpendicular 10x-6y=-4
perpendicular\:10x-6y=-4
critical f(x)=tan(x)
critical\:f(x)=\tan(x)
parallel 5x-8y-7=0
parallel\:5x-8y-7=0
inverse of f(x)= 1/2 (x-1)^3
inverse\:f(x)=\frac{1}{2}(x-1)^{3}
intercepts of sqrt(x+2)-5
intercepts\:\sqrt{x+2}-5
domain of f(x)=log_{2}(x^2)
domain\:f(x)=\log_{2}(x^{2})
asymptotes of f(x)=(2x+6)/(x+4)
asymptotes\:f(x)=\frac{2x+6}{x+4}
intercepts of (x^2)/(x+3)
intercepts\:\frac{x^{2}}{x+3}
intercepts of f(x)=x^2+x+1
intercepts\:f(x)=x^{2}+x+1
domain of g(x)=(sqrt(x))/(9x^2+8x-1)
domain\:g(x)=\frac{\sqrt{x}}{9x^{2}+8x-1}
slope ofintercept 5x+y=4
slopeintercept\:5x+y=4
asymptotes of (x^2-4x-5)/(x^2-1)
asymptotes\:\frac{x^{2}-4x-5}{x^{2}-1}
inverse of f(x)= 1/2 sin(x/2)+1/2
inverse\:f(x)=\frac{1}{2}\sin(\frac{x}{2})+\frac{1}{2}
asymptotes of f(x)=((2x-5)(2x+5))/(x^2)
asymptotes\:f(x)=\frac{(2x-5)(2x+5)}{x^{2}}
line (-P,0),(0,-R)
line\:(-P,0),(0,-R)
domain of f(x)= 7/(7+x)
domain\:f(x)=\frac{7}{7+x}
asymptotes of f(x)=x^3-2x^2+x
asymptotes\:f(x)=x^{3}-2x^{2}+x
midpoint (9,-8),(-7,-5)
midpoint\:(9,-8),(-7,-5)
range of f(x)=2sqrt(x-3)
range\:f(x)=2\sqrt{x-3}
range of 3^x+6
range\:3^{x}+6
domain of sqrt((25-x^2)(x+1))
domain\:\sqrt{(25-x^{2})(x+1)}
inflection (x^2-9)/(x-1)
inflection\:\frac{x^{2}-9}{x-1}
intercepts of f(x)=(x^2)/(x^2+3)
intercepts\:f(x)=\frac{x^{2}}{x^{2}+3}
intercepts of f(x)=x^2-3x+4
intercepts\:f(x)=x^{2}-3x+4
inverse of f(x)= x/(6x+2)
inverse\:f(x)=\frac{x}{6x+2}
domain of f(x)=\sqrt[4]{56x^2}
domain\:f(x)=\sqrt[4]{56x^{2}}
inverse of f(x)=sqrt(2x-10)
inverse\:f(x)=\sqrt{2x-10}
domain of f(x)= 9/(sqrt(x))
domain\:f(x)=\frac{9}{\sqrt{x}}
critical f(x)=(x+1)^2(x-4)^3
critical\:f(x)=(x+1)^{2}(x-4)^{3}
extreme f(x)=8x^4-48x^2
extreme\:f(x)=8x^{4}-48x^{2}
parity f(x)= 1/(x+1)
parity\:f(x)=\frac{1}{x+1}
1
..
420
421
422
423
424
..
1324