Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=-3x+11
inverse\:f(x)=-3x+11
asymptotes of (2x)/(9-x^2)
asymptotes\:\frac{2x}{9-x^{2}}
range of x^2-3x+2
range\:x^{2}-3x+2
slope of y=-4x+8
slope\:y=-4x+8
domain of f(x)= 1/2 x-4
domain\:f(x)=\frac{1}{2}x-4
perpendicular y=4
perpendicular\:y=4
periodicity of y=3sin(x-pi/2)
periodicity\:y=3\sin(x-\frac{π}{2})
intercepts of f(x)=-3x-9
intercepts\:f(x)=-3x-9
slope ofintercept y-9= 2/3 (x+7)
slopeintercept\:y-9=\frac{2}{3}(x+7)
domain of (4t^2-9)/(8t+16)
domain\:\frac{4t^{2}-9}{8t+16}
asymptotes of x/(-x-2)
asymptotes\:\frac{x}{-x-2}
extreme y=2x^3-3x^2-12x+7
extreme\:y=2x^{3}-3x^{2}-12x+7
inverse of f(x)=9+\sqrt[3]{x}
inverse\:f(x)=9+\sqrt[3]{x}
domain of-x+12
domain\:-x+12
global x^3
global\:x^{3}
domain of 2sqrt(x+4)-5
domain\:2\sqrt{x+4}-5
parity f(x)=(e^x)/(1+e^{2x)}
parity\:f(x)=\frac{e^{x}}{1+e^{2x}}
inverse of f(x)=2370
inverse\:f(x)=2370
asymptotes of f(x)=(x^2)/(x^2-1)
asymptotes\:f(x)=\frac{x^{2}}{x^{2}-1}
inverse of f(x)= 15/16 x+21/2
inverse\:f(x)=\frac{15}{16}x+\frac{21}{2}
inverse of f(x)=x^2+2x+1
inverse\:f(x)=x^{2}+2x+1
inverse of f(x)=\sqrt[5]{-x/(10)}
inverse\:f(x)=\sqrt[5]{-\frac{x}{10}}
inverse of f(x)=-4x-12
inverse\:f(x)=-4x-12
perpendicular y=-1/4 x+3
perpendicular\:y=-\frac{1}{4}x+3
extreme f(x)=-x^3+3x^2-3
extreme\:f(x)=-x^{3}+3x^{2}-3
inverse of f(x)=x^2+3,x>= 0
inverse\:f(x)=x^{2}+3,x\ge\:0
inverse of f(x)=12-x^2
inverse\:f(x)=12-x^{2}
intercepts of f(x)=x(x+2)(x-3)
intercepts\:f(x)=x(x+2)(x-3)
inverse of f(x)=(2x)/(x-8)
inverse\:f(x)=\frac{2x}{x-8}
critical f(x)=x^3+3x^2-9x-4
critical\:f(x)=x^{3}+3x^{2}-9x-4
domain of f(x)=x^3+2x^2-9x-18
domain\:f(x)=x^{3}+2x^{2}-9x-18
inverse of f(x)=-4/3 x+2
inverse\:f(x)=-\frac{4}{3}x+2
distance (2,0),(8,-4)
distance\:(2,0),(8,-4)
asymptotes of f(x)=4sec(2x-pi)
asymptotes\:f(x)=4\sec(2x-π)
range of (1000)/(100+900e^{-x)}
range\:\frac{1000}{100+900e^{-x}}
asymptotes of f(x)=(x-1)/(x^2-25)
asymptotes\:f(x)=\frac{x-1}{x^{2}-25}
monotone f(x)=4x^{3/5}-x^{4/5}
monotone\:f(x)=4x^{\frac{3}{5}}-x^{\frac{4}{5}}
simplify (5.3)(4.2)
simplify\:(5.3)(4.2)
asymptotes of (x^2)/(x^2-1)
asymptotes\:\frac{x^{2}}{x^{2}-1}
perpendicular y=-2x+6
perpendicular\:y=-2x+6
vertices y=x^2-2x
vertices\:y=x^{2}-2x
line (9,-2),(1,6)
line\:(9,-2),(1,6)
symmetry-x^2-x+6
symmetry\:-x^{2}-x+6
inverse of f(x)=1-cx
inverse\:f(x)=1-cx
inflection 1/(x^2+1)
inflection\:\frac{1}{x^{2}+1}
asymptotes of y=ln|x|
asymptotes\:y=\ln\left|x\right|
domain of f(x)= 4/5
domain\:f(x)=\frac{4}{5}
asymptotes of g(x)= 3/(x-6)-2
asymptotes\:g(x)=\frac{3}{x-6}-2
intercepts of 1/((x+1)^2)
intercepts\:\frac{1}{(x+1)^{2}}
range of f(x)=3x+4
range\:f(x)=3x+4
slope ofintercept 5x+6y=-6
slopeintercept\:5x+6y=-6
midpoint (3,-5),(9,5)
midpoint\:(3,-5),(9,5)
range of 3x^2+6x
range\:3x^{2}+6x
critical f(x)=-x^3-3x^2+9x+3
critical\:f(x)=-x^{3}-3x^{2}+9x+3
range of f(x)=sqrt(x)+6
range\:f(x)=\sqrt{x}+6
perpendicular 6x+3y=-6
perpendicular\:6x+3y=-6
domain of f(x)=(1+4x)/(2x-1)
domain\:f(x)=\frac{1+4x}{2x-1}
simplify (10.3)(4.7)
simplify\:(10.3)(4.7)
critical 12x^2-204x+594
critical\:12x^{2}-204x+594
parallel y=0.25x-7,(-6,8)
parallel\:y=0.25x-7,(-6,8)
intercepts of f(x)=-3x+8
intercepts\:f(x)=-3x+8
distance (1,-7),(-4,-5)
distance\:(1,-7),(-4,-5)
asymptotes of (-x+4)/(2x+3)
asymptotes\:\frac{-x+4}{2x+3}
range of 3/((x-2)(x+2))
range\:\frac{3}{(x-2)(x+2)}
critical sin^2(x)
critical\:\sin^{2}(x)
extreme f(x)=x^3-12x+5
extreme\:f(x)=x^{3}-12x+5
inverse of f(x)=sqrt(x^2+5x),x>0
inverse\:f(x)=\sqrt{x^{2}+5x},x>0
slope of 2x-y=6
slope\:2x-y=6
line m=1,(-4,7)
line\:m=1,(-4,7)
simplify (0.4)(4)
simplify\:(0.4)(4)
inverse of f(x)= 5/(7x)
inverse\:f(x)=\frac{5}{7x}
domain of f(x)=5+2e^x
domain\:f(x)=5+2e^{x}
domain of f(x)=((x-2)(x-4))/(x-4)
domain\:f(x)=\frac{(x-2)(x-4)}{x-4}
critical f(x)=(x+3)(x-5)^2
critical\:f(x)=(x+3)(x-5)^{2}
inverse of f(x)=x-1/5
inverse\:f(x)=x-\frac{1}{5}
domain of f(x)=(2x)/(x+1)
domain\:f(x)=\frac{2x}{x+1}
asymptotes of f(x)=5*3^x
asymptotes\:f(x)=5\cdot\:3^{x}
monotone x^2e^{1-x^2}
monotone\:x^{2}e^{1-x^{2}}
distance (4,2),(-2,4)
distance\:(4,2),(-2,4)
domain of f(x)=(x^3-1)/(sqrt(x)-1)
domain\:f(x)=\frac{x^{3}-1}{\sqrt{x}-1}
inverse of f(x)=(x+1)/(2x-1)
inverse\:f(x)=\frac{x+1}{2x-1}
symmetry x^2+8x+18
symmetry\:x^{2}+8x+18
line (-9,6),(-6,-9)
line\:(-9,6),(-6,-9)
domain of ((5-x))/((x^2-4x))
domain\:\frac{(5-x)}{(x^{2}-4x)}
domain of f(x)=sqrt(|x|)
domain\:f(x)=\sqrt{\left|x\right|}
inverse of (6x)/(x+7)
inverse\:\frac{6x}{x+7}
intercepts of arctan((x-1)/(x+1))
intercepts\:\arctan(\frac{x-1}{x+1})
extreme f(x)=3x^2ln(x/4)
extreme\:f(x)=3x^{2}\ln(\frac{x}{4})
asymptotes of f(x)=2^x-6
asymptotes\:f(x)=2^{x}-6
domain of f(x)=(-8-9x)/(8x-7)
domain\:f(x)=\frac{-8-9x}{8x-7}
inflection x^2ln(x/2)
inflection\:x^{2}\ln(\frac{x}{2})
extreme f(x)=x^3-12x^2-27x+4
extreme\:f(x)=x^{3}-12x^{2}-27x+4
parallel 4x+3y=-6
parallel\:4x+3y=-6
inverse of f(x)=(3x)/((x+1))
inverse\:f(x)=\frac{3x}{(x+1)}
range of f(x)=|3x-5|+1
range\:f(x)=\left|3x-5\right|+1
inverse of f(x)=e^{14x-15}
inverse\:f(x)=e^{14x-15}
inverse of f(x)=(x+7)/(x-3)
inverse\:f(x)=\frac{x+7}{x-3}
asymptotes of f(x)=(4x)/((2x+3))
asymptotes\:f(x)=\frac{4x}{(2x+3)}
slope of 6x+2y=4
slope\:6x+2y=4
inverse of g(x)=-3/5 x+12/5
inverse\:g(x)=-\frac{3}{5}x+\frac{12}{5}
1
..
418
419
420
421
422
..
1324