extreme f(x,y)=6x^2-2x^3+3y^2+6xy
|
extreme\:f(x,y)=6x^{2}-2x^{3}+3y^{2}+6xy
|
extreme f(x)=x+y
|
extreme\:f(x)=x+y
|
extreme f(x)=x^{2/3}(6-x)^{1/3}
|
extreme\:f(x)=x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}
|
extreme f(x,y)=e^{x^2+y^2}
|
extreme\:f(x,y)=e^{x^{2}+y^{2}}
|
f(m,a)=ma
|
f(m,a)=ma
|
extreme f(x,y)= 1/(x^2+y^2-1)
|
extreme\:f(x,y)=\frac{1}{x^{2}+y^{2}-1}
|
extreme f(x,y)=xy+1/x+1/y
|
extreme\:f(x,y)=xy+\frac{1}{x}+\frac{1}{y}
|
extreme f(x,y)=sqrt(x-y)
|
extreme\:f(x,y)=\sqrt{x-y}
|
extreme f(x)=x^2+2x
|
extreme\:f(x)=x^{2}+2x
|
extreme f(x,y)=x^2y-x^2-2y^2
|
extreme\:f(x,y)=x^{2}y-x^{2}-2y^{2}
|
extreme f(x)=2x^3+9x^2+12x+1
|
extreme\:f(x)=2x^{3}+9x^{2}+12x+1
|
extreme f(x)=3x^4-4x^3
|
extreme\:f(x)=3x^{4}-4x^{3}
|
extreme g(x,y)=sqrt(9-x^2-y^2)
|
extreme\:g(x,y)=\sqrt{9-x^{2}-y^{2}}
|
extreme f(x)=(x^2)/(x^2-1)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}-1}
|
extreme f(x)=5-2x+3x^2-x^3
|
extreme\:f(x)=5-2x+3x^{2}-x^{3}
|
extreme f(x,y)=ln(x^2+y^2-4)
|
extreme\:f(x,y)=\ln(x^{2}+y^{2}-4)
|
extreme f(x,y)=ln(x+y)
|
extreme\:f(x,y)=\ln(x+y)
|
extreme f(x)=-(x+4)^3
|
extreme\:f(x)=-(x+4)^{3}
|
extreme f(x,y)=sqrt(4-x^2-4y^2)
|
extreme\:f(x,y)=\sqrt{4-x^{2}-4y^{2}}
|
extreme (ln(x))/(x^2)
|
extreme\:\frac{\ln(x)}{x^{2}}
|
extreme f(t)=e^{-at}
|
extreme\:f(t)=e^{-at}
|
extreme f(x,y)=ln(1-x^2-y^2)
|
extreme\:f(x,y)=\ln(1-x^{2}-y^{2})
|
extreme f(x)=(x-5)^2
|
extreme\:f(x)=(x-5)^{2}
|
extreme f(x)=xy
|
extreme\:f(x)=xy
|
extreme f(x)=(x^2-4)/(x^2+4)
|
extreme\:f(x)=\frac{x^{2}-4}{x^{2}+4}
|
extreme f(x,y)=sqrt(16-4x^2-y^2)
|
extreme\:f(x,y)=\sqrt{16-4x^{2}-y^{2}}
|
extreme f(x,y)=ln(x+y-1)
|
extreme\:f(x,y)=\ln(x+y-1)
|
extreme f(x,y)=sqrt(y-x-2)
|
extreme\:f(x,y)=\sqrt{y-x-2}
|
extreme f(x)=x^2+3x-8
|
extreme\:f(x)=x^{2}+3x-8
|
extreme f(x)=2x^3-3x^2-12x+15
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+15
|
extreme f(x,y)=2x-3y+6
|
extreme\:f(x,y)=2x-3y+6
|
extreme f(x,y)=ln(4-x-y)
|
extreme\:f(x,y)=\ln(4-x-y)
|
extreme f(x,y)=x^4+y^4-4xy+1
|
extreme\:f(x,y)=x^{4}+y^{4}-4xy+1
|
extreme f(x)=-3x^5+5x^3
|
extreme\:f(x)=-3x^{5}+5x^{3}
|
extreme f(x)=xsqrt(9-x^2)
|
extreme\:f(x)=x\sqrt{9-x^{2}}
|
extreme f(x,y)=sqrt(y-x)
|
extreme\:f(x,y)=\sqrt{y-x}
|
extreme f(x)=2x^3+3x^2+12x-4
|
extreme\:f(x)=2x^{3}+3x^{2}+12x-4
|
extreme f(x)=(2-x)^3
|
extreme\:f(x)=(2-x)^{3}
|
extreme f(x,y)=x^3+y^3-3x^2-3y^2-9x
|
extreme\:f(x,y)=x^{3}+y^{3}-3x^{2}-3y^{2}-9x
|
extreme f(x)=2cos(x)+sin(2x)
|
extreme\:f(x)=2\cos(x)+\sin(2x)
|
extreme f(x,y)=x^2+2y^2
|
extreme\:f(x,y)=x^{2}+2y^{2}
|
extreme f(x)=-x^2+10x-21
|
extreme\:f(x)=-x^{2}+10x-21
|
extreme f(x,y)=x^3+2y^3-3y^2-3x
|
extreme\:f(x,y)=x^{3}+2y^{3}-3y^{2}-3x
|
extreme f(x,y)=2x^4+y^2-x^2-2y
|
extreme\:f(x,y)=2x^{4}+y^{2}-x^{2}-2y
|
extreme f(x,y)= x/(x^2+y^2)
|
extreme\:f(x,y)=\frac{x}{x^{2}+y^{2}}
|
extreme f(x,y)=xln(y^2-x)
|
extreme\:f(x,y)=x\ln(y^{2}-x)
|
extreme f(x)=x^3-3x^2+3x
|
extreme\:f(x)=x^{3}-3x^{2}+3x
|
extreme f(x,y)=x^2+xy+3x+2y+5
|
extreme\:f(x,y)=x^{2}+xy+3x+2y+5
|
extreme f(x)=xy
|
extreme\:f(x)=xy
|
extreme f(x,y)=ln(xy-6)
|
extreme\:f(x,y)=\ln(xy-6)
|
extreme f(x,y)=xy+1/x+1/y
|
extreme\:f(x,y)=xy+\frac{1}{x}+\frac{1}{y}
|
extreme f(x)=2x^3-3x^2
|
extreme\:f(x)=2x^{3}-3x^{2}
|
extreme f(x,y)=xe^y
|
extreme\:f(x,y)=xe^{y}
|
extreme f(x,y)= 1/(sqrt(16-x^2-y^2))
|
extreme\:f(x,y)=\frac{1}{\sqrt{16-x^{2}-y^{2}}}
|
extreme f(x)=100+1/2 x+(1800)/x
|
extreme\:f(x)=100+\frac{1}{2}x+\frac{1800}{x}
|
extreme f(x)= x/(sqrt(x^2-9))
|
extreme\:f(x)=\frac{x}{\sqrt{x^{2}-9}}
|
extreme f(x)=2x^3-3x^2-12x+1,-2<= x<= 3
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+1,-2\le\:x\le\:3
|
extreme f(x,y)=sqrt(25-x^2-y^2)
|
extreme\:f(x,y)=\sqrt{25-x^{2}-y^{2}}
|
extreme f(x,y)=x^2+y^2+x^2y+4
|
extreme\:f(x,y)=x^{2}+y^{2}+x^{2}y+4
|
extreme f(x,y)=x^2+xy+y^2+3x-3y+4
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+3x-3y+4
|
extreme f(x)=-2x^2-12x-13
|
extreme\:f(x)=-2x^{2}-12x-13
|
extreme f(x)=(x^2-1)^2
|
extreme\:f(x)=(x^{2}-1)^{2}
|
extreme f(x)=sqrt(xy)
|
extreme\:f(x)=\sqrt{xy}
|
extreme f(x)=x^3-6x^2+8
|
extreme\:f(x)=x^{3}-6x^{2}+8
|
extreme f(x,y)=y^3+3x^2y-6x^2-6y^2+2
|
extreme\:f(x,y)=y^{3}+3x^{2}y-6x^{2}-6y^{2}+2
|
extreme 2x^3+3x^2-12x
|
extreme\:2x^{3}+3x^{2}-12x
|
extreme f(x,y)=e^{x+y}
|
extreme\:f(x,y)=e^{x+y}
|
extreme f(x)=2x^3+3x^2-120x
|
extreme\:f(x)=2x^{3}+3x^{2}-120x
|
extreme f(x)=-4x^3+3x^2+18x
|
extreme\:f(x)=-4x^{3}+3x^{2}+18x
|
extreme (e^x)/x
|
extreme\:\frac{e^{x}}{x}
|
extreme f(x,y)=2x^2-8x+y^2+16y+100
|
extreme\:f(x,y)=2x^{2}-8x+y^{2}+16y+100
|
extreme f(x,y)= 1/(sqrt(25-x^2-y^2))
|
extreme\:f(x,y)=\frac{1}{\sqrt{25-x^{2}-y^{2}}}
|
extreme f(x)=sqrt(1-x^2)
|
extreme\:f(x)=\sqrt{1-x^{2}}
|
extreme f(x,y)=4x^2y+2xy^2-12xy-5
|
extreme\:f(x,y)=4x^{2}y+2xy^{2}-12xy-5
|
extreme f(x)=x^3+(48)/x
|
extreme\:f(x)=x^{3}+\frac{48}{x}
|
extreme f(x,y)=(y^2)/(y+x^2)
|
extreme\:f(x,y)=\frac{y^{2}}{y+x^{2}}
|
extreme f(x)= 1/3 x^3+1/2 x^2-6x+8
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-6x+8
|
extreme f(x)=x^{2/3}
|
extreme\:f(x)=x^{\frac{2}{3}}
|
extreme f(x,y)=9-2x+4y-x^2-4y^2
|
extreme\:f(x,y)=9-2x+4y-x^{2}-4y^{2}
|
extreme f(x)=x^2e^{-x},-1<= x<= 1
|
extreme\:f(x)=x^{2}e^{-x},-1\le\:x\le\:1
|
extreme f(x)=x^4+4x^3-2
|
extreme\:f(x)=x^{4}+4x^{3}-2
|
extreme f(x,y)=sqrt(36-9x^2-4y^2)
|
extreme\:f(x,y)=\sqrt{36-9x^{2}-4y^{2}}
|
extreme f(x)=-x^3+2x^2
|
extreme\:f(x)=-x^{3}+2x^{2}
|
extreme f(x,y)=(x^2+y^2)*e^{-x-y}
|
extreme\:f(x,y)=(x^{2}+y^{2})\cdot\:e^{-x-y}
|
extreme f(x)=sqrt(4-x^2-y^2)
|
extreme\:f(x)=\sqrt{4-x^{2}-y^{2}}
|
extreme f(x,y)=4xy-x^4-y^4
|
extreme\:f(x,y)=4xy-x^{4}-y^{4}
|
extreme f(x,y)=x^y
|
extreme\:f(x,y)=x^{y}
|
extreme f(x)=4x^3-39x^2+90x+2
|
extreme\:f(x)=4x^{3}-39x^{2}+90x+2
|
extreme f(x,y)= 1/(x+y)
|
extreme\:f(x,y)=\frac{1}{x+y}
|
extreme f(x,y)=x^2+y^2+x^2y+4
|
extreme\:f(x,y)=x^{2}+y^{2}+x^{2}y+4
|
extreme f(x,y)=2xy+2x-x^2-2y^2
|
extreme\:f(x,y)=2xy+2x-x^{2}-2y^{2}
|
extreme f(x)=cos(3x)
|
extreme\:f(x)=\cos(3x)
|
extreme f(x)=2x^3-3x^2+6
|
extreme\:f(x)=2x^{3}-3x^{2}+6
|
extreme f(x,y)=x^2+9y^2
|
extreme\:f(x,y)=x^{2}+9y^{2}
|
extreme f(x)=2x+8/(x^2)+5,x>0
|
extreme\:f(x)=2x+\frac{8}{x^{2}}+5,x>0
|
extreme f(x)=-2x^2+4x+3
|
extreme\:f(x)=-2x^{2}+4x+3
|
extreme f(x,y)= 1/(1-x^2-y^2)
|
extreme\:f(x,y)=\frac{1}{1-x^{2}-y^{2}}
|
extreme f(x,y)=14x^2-2x^3+2y^2+4xy
|
extreme\:f(x,y)=14x^{2}-2x^{3}+2y^{2}+4xy
|
extreme f(x,y)=x^2y-2xy+y^2+3
|
extreme\:f(x,y)=x^{2}y-2xy+y^{2}+3
|
extreme x^2y+y^3-12y
|
extreme\:x^{2}y+y^{3}-12y
|