Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(e^{2z})
\frac{\partial\:}{\partial\:x}(e^{2z})
tangent of f(x)=3x^2-4,\at x=2
tangent\:f(x)=3x^{2}-4,\at\:x=2
y^{''}-y=e^{-t},y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}-y=e^{-t},y(0)=1,y^{\prime\:}(0)=0
integral of 8+7^x
\int\:8+7^{x}dx
tangent of f(x)=e^{5x}cos(pix),\at x=1
tangent\:f(x)=e^{5x}\cos(πx),\at\:x=1
integral of-2e^x
\int\:-2e^{x}dx
derivative of-6sin(2x+3cos(3x))
\frac{d}{dx}(-6\sin(2x)+3\cos(3x))
derivative of x(55-0.5x-110)
\frac{d}{dx}(x(55-0.5x)-110)
d/(dt)(e^{3it})
\frac{d}{dt}(e^{3it})
integral of (x^3)/(x^2-100)
\int\:\frac{x^{3}}{x^{2}-100}dx
sum from n=1 to infinity of 2/(n^2+4n+2)
\sum\:_{n=1}^{\infty\:}\frac{2}{n^{2}+4n+2}
derivative of (sin(5x)/(cos(6x)))
\frac{d}{dx}(\frac{\sin(5x)}{\cos(6x)})
derivative of (x^2-4^2(x-1))
\frac{d}{dx}((x^{2}-4)^{2}(x-1))
derivative of ((1-5t))/(2+t)
derivative\:\frac{(1-5t)}{2+t}
(\partial)/(\partial x)(1/(sqrt(2pit))e^{-((x-y)^2)/(2t)})
\frac{\partial\:}{\partial\:x}(\frac{1}{\sqrt{2πt}}e^{-\frac{(x-y)^{2}}{2t}})
limit as x approaches 1-of 2x-1
\lim\:_{x\to\:1-}(2x-1)
derivative of f(x)=(4x)/(x^2+4)
derivative\:f(x)=\frac{4x}{x^{2}+4}
integral of (28)/(1-cos(4x))
\int\:\frac{28}{1-\cos(4x)}dx
y^'=y+x,y(0)=1
y^{\prime\:}=y+x,y(0)=1
(dy)/(dx)=(y^2-1)/(x^2-1),y(2)=2
\frac{dy}{dx}=\frac{y^{2}-1}{x^{2}-1},y(2)=2
integral of sin(t)e^{-2/3 t}
\int\:\sin(t)e^{-\frac{2}{3}t}dt
integral from 1 to 2 of x^2e^{x^3-1}
\int\:_{1}^{2}x^{2}e^{x^{3}-1}dx
sum from n=1 to infinity of 1/(\sqrt[n]{2)}
\sum\:_{n=1}^{\infty\:}\frac{1}{\sqrt[n]{2}}
y^{''}+9y=(sec(3t))^2
y^{\prime\:\prime\:}+9y=(\sec(3t))^{2}
(dy}{dx}+(2y)/x =\frac{sin(x))/(x^2)
\frac{dy}{dx}+\frac{2y}{x}=\frac{\sin(x)}{x^{2}}
laplacetransform te^{-t}
laplacetransform\:te^{-t}
derivative of e^{-2x}-3y
\frac{d}{dx}(e^{-2x}-3y)
derivative of (2x-1/(x+2))
\frac{d}{dx}(\frac{2x-1}{x+2})
integral of ((\sqrt[3]{x}+sqrt(x^5))/x)
\int\:(\frac{\sqrt[3]{x}+\sqrt{x^{5}}}{x})dx
y^'=e^{8x}-6x
y^{\prime\:}=e^{8x}-6x
derivative of f(x)=(40t)/(t+2)
derivative\:f(x)=\frac{40t}{t+2}
limit as h approaches 0 of (2x+h)-2x
\lim\:_{h\to\:0}((2x+h)-2x)
derivative of cos((1-e^{4x})/(1+e^{4x)})
derivative\:\cos(\frac{1-e^{4x}}{1+e^{4x}})
integral of sin(x^2-5)x
\int\:\sin(x^{2}-5)xdx
y^'=x^{2/3}
y^{\prime\:}=x^{\frac{2}{3}}
integral from 1 to e^4 of (ln(x))/(x^2)
\int\:_{1}^{e^{4}}\frac{\ln(x)}{x^{2}}dx
limit as x approaches infinito of 10
\lim\:_{x\to\:infinito}(10)
(\partial)/(\partial x)(5(y^2-x^2)ln(x+y))
\frac{\partial\:}{\partial\:x}(5(y^{2}-x^{2})\ln(x+y))
t^2y^{''}-2y=0
t^{2}y^{\prime\:\prime\:}-2y=0
derivative of sin(xcos(3-x^2))
\frac{d}{dx}(\sin(x)\cos(3-x^{2}))
derivative of e^{ax}a
\frac{d}{dx}(e^{ax}a)
(dy)/(dx)=x^3
\frac{dy}{dx}=x^{3}
(x+y-2)dx+(x-y+4)dy=0
(x+y-2)dx+(x-y+4)dy=0
(\partial)/(\partial x)(e^x+cos(xy))
\frac{\partial\:}{\partial\:x}(e^{x}+\cos(xy))
derivative of-x^2-2
\frac{d}{dx}(-x^{2}-2)
integral of (2x)/(sqrt(9-x^4))
\int\:\frac{2x}{\sqrt{9-x^{4}}}dx
slope of (-3,1),(-7,-2)
slope\:(-3,1),(-7,-2)
derivative of (sec(x))^3
derivative\:(\sec(x))^{3}
integral of (e^x)/((e^x-8)(e^{2x)+1)}
\int\:\frac{e^{x}}{(e^{x}-8)(e^{2x}+1)}dx
limit as x approaches infinity of 3+5/x
\lim\:_{x\to\:\infty\:}(3+\frac{5}{x})
(\partial)/(\partial x)(d/t)
\frac{\partial\:}{\partial\:x}(\frac{d}{t})
integral from 0 to 5 of |5x-10|
\int\:_{0}^{5}\left|5x-10\right|dx
y^'=3x(y-1)^{1/3}
y^{\prime\:}=3x(y-1)^{\frac{1}{3}}
area 10x-5x^2,x=\sqrt[3]{4},x=2
area\:10x-5x^{2},x=\sqrt[3]{4},x=2
(\partial)/(\partial x)(3x*e^{2x+y^2})
\frac{\partial\:}{\partial\:x}(3x\cdot\:e^{2x+y^{2}})
derivative of xsqrt(3-2x^2)
\frac{d}{dx}(x\sqrt{3-2x^{2}})
integral of u/(sqrt(u^2-1))
\int\:\frac{u}{\sqrt{u^{2}-1}}du
(dN)/(dt)=(te^t)/(N^2)
\frac{dN}{dt}=\frac{te^{t}}{N^{2}}
sum from n=0 to infinity of 1/(n^5)
\sum\:_{n=0}^{\infty\:}\frac{1}{n^{5}}
sum from n=8 to infinity of (1/4)^n
\sum\:_{n=8}^{\infty\:}(\frac{1}{4})^{n}
integral of csc^2(kx)
\int\:\csc^{2}(kx)dx
derivative of (7x^2)/(sqrt(x))
derivative\:\frac{7x^{2}}{\sqrt{x}}
derivative of (x^2/4+2x+3)
\frac{d}{dx}(\frac{x^{2}}{4}+2x+3)
integral of 1/(x^2-7x+10)
\int\:\frac{1}{x^{2}-7x+10}dx
d/(dy)(x^2-3y^2)
\frac{d}{dy}(x^{2}-3y^{2})
integral of 4x^2ln(x)
\int\:4x^{2}\ln(x)dx
integral of x/((x^2+2x+2)^2)
\int\:\frac{x}{(x^{2}+2x+2)^{2}}dx
derivative of (1+7x^2)(x-x^2)
derivative\:(1+7x^{2})(x-x^{2})
integral of (e^x)/(sqrt(1-16e^{2x))}
\int\:\frac{e^{x}}{\sqrt{1-16e^{2x}}}dx
integral from 9 to 10 of 1/((x-9)^{4/3)}
\int\:_{9}^{10}\frac{1}{(x-9)^{\frac{4}{3}}}dx
integral from 0 to 6.25 of-x^2+5x
\int\:_{0}^{6.25}-x^{2}+5xdx
integral of 15x^{1/4}
\int\:15x^{\frac{1}{4}}dx
derivative of arctan(x^5)
\frac{d}{dx}(\arctan(x^{5}))
area \sqrt[3]{x}, 1/x ,x=27
area\:\sqrt[3]{x},\frac{1}{x},x=27
(\partial)/(\partial y)(y^{2x})
\frac{\partial\:}{\partial\:y}(y^{2x})
limit as x approaches-2 of 4x^3+4x-2
\lim\:_{x\to\:-2}(4x^{3}+4x-2)
area 8-x^2,x^2,(-3,3)
area\:8-x^{2},x^{2},(-3,3)
derivative of 1/(x+1)
derivative\:\frac{1}{x+1}
y^{''}+4y^'+5y=10x+5e^{-x}
y^{\prime\:\prime\:}+4y^{\prime\:}+5y=10x+5e^{-x}
area 3x^2,-3x+6
area\:3x^{2},-3x+6
integral of (sec^2(x)e^{tan(x)})
\int\:(\sec^{2}(x)e^{\tan(x)})dx
tangent of (sqrt(x))/(x+4)
tangent\:\frac{\sqrt{x}}{x+4}
derivative of log_{8}(2x^3+3x^2+1)
derivative\:\log_{8}(2x^{3}+3x^{2}+1)
integral of (sqrt(4x^2-9))/(x^3)
\int\:\frac{\sqrt{4x^{2}-9}}{x^{3}}dx
limit as x approaches 0 of sqrt(x)
\lim\:_{x\to\:0}(\sqrt{x})
limit as x approaches 1 of 1/(|x-1|)
\lim\:_{x\to\:1}(\frac{1}{\left|x-1\right|})
(\partial)/(\partial y)(tan(3+2x^2y^3z^2))
\frac{\partial\:}{\partial\:y}(\tan(3+2x^{2}y^{3}z^{2}))
integral of 1/(x^2sqrt(x-1))
\int\:\frac{1}{x^{2}\sqrt{x-1}}dx
integral of (4^x-1/(3x))
\int\:(4^{x}-\frac{1}{3x})dx
derivative of f(x)=x^{7x}
derivative\:f(x)=x^{7x}
maclaurin 1/(1+x+x^2)
maclaurin\:\frac{1}{1+x+x^{2}}
factor 12x^5-8x^4+20x^3
factor\:12x^{5}-8x^{4}+20x^{3}
slope of (-1,8),(3,-4)
slope\:(-1,8),(3,-4)
f(x)=(3x^3-4)(-4x-3)
f(x)=(3x^{3}-4)(-4x-3)
area y=cos(x),y=0.5
area\:y=\cos(x),y=0.5
integral from-10 to 10 of xe^{-x^8}
\int\:_{-10}^{10}xe^{-x^{8}}dx
derivative of sin(x/2)
derivative\:\sin(\frac{x}{2})
derivative of ((x+3))/(x^2-4)
derivative\:\frac{(x+3)}{x^{2}-4}
(9x^2+y-1)dx-(4y-x)dy=0
(9x^{2}+y-1)dx-(4y-x)dy=0
(\partial)/(\partial x)(1+ln(x)+y/x)
\frac{\partial\:}{\partial\:x}(1+\ln(x)+\frac{y}{x})
1
..
1153
1154
1155
1156
1157
..
2459