Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(dy)/(dt)=e^{-2t+3y}
\frac{dy}{dt}=e^{-2t+3y}
slope of (-2,-6),(1,6)
slope\:(-2,-6),(1,6)
integral of sqrt(xy-y^2)
\int\:\sqrt{xy-y^{2}}dx
(dy)/(dx)=0.2y-0.001y^2
\frac{dy}{dx}=0.2y-0.001y^{2}
derivative of y=ln(4t)
derivative\:y=\ln(4t)
tangent of y=2x^2-x^4,(1,1)
tangent\:y=2x^{2}-x^{4},(1,1)
(dy)/(dx)=-2x+3y-5
\frac{dy}{dx}=-2x+3y-5
(\partial)/(\partial z)(x+y+z)
\frac{\partial\:}{\partial\:z}(x+y+z)
integral of e^{at}
\int\:e^{at}dt
(\partial)/(\partial x)(1/4 2^xy^3)
\frac{\partial\:}{\partial\:x}(\frac{1}{4}2^{x}y^{3})
integral of 1/(sqrt(16+x^2))
\int\:\frac{1}{\sqrt{16+x^{2}}}dx
(\partial)/(\partial y)(8xy-1/4 (x+y)^4)
\frac{\partial\:}{\partial\:y}(8xy-\frac{1}{4}(x+y)^{4})
limit as x approaches x of sin(x)
\lim\:_{x\to\:x}(\sin(x))
area y=x^2,y=9x,y=-1
area\:y=x^{2},y=9x,y=-1
derivative of-xe^{-x}-e^{-x}+1
\frac{d}{dx}(-xe^{-x}-e^{-x}+1)
integral of (4x^3-2x+1)/x
\int\:\frac{4x^{3}-2x+1}{x}dx
tangent of y=3x^3-x^2+1,(2,21)
tangent\:y=3x^{3}-x^{2}+1,(2,21)
limit as x approaches infinity of 2x^2+1
\lim\:_{x\to\:\infty\:}(2x^{2}+1)
derivative of e^x+e
\frac{d}{dx}(e^{x}+e)
integral of (sin^2(x))/(cos^3(x))
\int\:\frac{\sin^{2}(x)}{\cos^{3}(x)}dx
area y= 26/5-1/x ,y=x
area\:y=\frac{26}{5}-\frac{1}{x},y=x
area 2x^2,2x+6,-2,-1
area\:2x^{2},2x+6,-2,-1
limit as x approaches infinity of e^{3x}
\lim\:_{x\to\:\infty\:}(e^{3x})
limit as x approaches 8+of 2/(x-8)
\lim\:_{x\to\:8+}(\frac{2}{x-8})
taylor (x-1)ln(x-1),2
taylor\:(x-1)\ln(x-1),2
y^{''}+16y=40sin(4t)
y^{\prime\:\prime\:}+16y=40\sin(4t)
(\partial)/(\partial y)(e^x+e^y)
\frac{\partial\:}{\partial\:y}(e^{x}+e^{y})
y^{''}-2y^'-y=0,y(0)=0,y^'(0)=2sqrt(2)
y^{\prime\:\prime\:}-2y^{\prime\:}-y=0,y(0)=0,y^{\prime\:}(0)=2\sqrt{2}
derivative of sqrt(1)
derivative\:\sqrt{1}
tangent of y=e^{4x},\at x= 1/4 ln(5)
tangent\:y=e^{4x},\at\:x=\frac{1}{4}\ln(5)
derivative of (4+8xcosh(2x))
\frac{d}{dx}((4+8x)\cosh(2x))
laplacetransform 5*sin(2*t)
laplacetransform\:5\cdot\:\sin(2\cdot\:t)
derivative of xye^x
\frac{d}{dx}(xye^{x})
derivative of (x^2+2x-5/((x+1)^2))
\frac{d}{dx}(\frac{x^{2}+2x-5}{(x+1)^{2}})
y^{''}+9/t y^'+(15)/(t^2)y=0
y^{\prime\:\prime\:}+\frac{9}{t}y^{\prime\:}+\frac{15}{t^{2}}y=0
sum from n=1 to infinity of (3^n)/(2^n)
\sum\:_{n=1}^{\infty\:}\frac{3^{n}}{2^{n}}
(\partial)/(\partial x)(2x^{0.5}y^{0.5})
\frac{\partial\:}{\partial\:x}(2x^{0.5}y^{0.5})
derivative of 3x^2+8x-25
derivative\:3x^{2}+8x-25
integral of 4x^2+3
\int\:4x^{2}+3dx
derivative of w(z)=(3z)/(1+2z)
derivative\:w(z)=\frac{3z}{1+2z}
limit as x approaches infinity of-8
\lim\:_{x\to\:\infty\:}(-8)
area cos(x),x^2+2,[0,2]
area\:\cos(x),x^{2}+2,[0,2]
integral of e^{-2x^2}
\int\:e^{-2x^{2}}dx
integral of 4x^4e^{-x}
\int\:4x^{4}e^{-x}dx
integral of (x^6-x^3+49)/(x^4+7x^2)
\int\:\frac{x^{6}-x^{3}+49}{x^{4}+7x^{2}}dx
integral of (6sqrt(x))/(x-1)
\int\:\frac{6\sqrt{x}}{x-1}dx
integral from-1 to 5 of-x^2+4x+5
\int\:_{-1}^{5}-x^{2}+4x+5dx
integral of (x^2)/(sqrt(x^6-7))
\int\:\frac{x^{2}}{\sqrt{x^{6}-7}}dx
d/(dy)(2x^3-x^2y)
\frac{d}{dy}(2x^{3}-x^{2}y)
integral of 1/(x^2-12x+35)
\int\:\frac{1}{x^{2}-12x+35}dx
3x^'-5x=12
3x^{\prime\:}-5x=12
(dy)/(dx)= 1/2 x+y-1
\frac{dy}{dx}=\frac{1}{2}x+y-1
y^{''''}+18y^{''}+81y=0
y^{\prime\:\prime\:\prime\:\prime\:}+18y^{\prime\:\prime\:}+81y=0
limit as x approaches 1 of x^2+2
\lim\:_{x\to\:1}(x^{2}+2)
derivative of (2x/((1+x)^2))
\frac{d}{dx}(\frac{2x}{(1+x)^{2}})
integral of (ln(sqrt(3x)))/x
\int\:\frac{\ln(\sqrt{3x})}{x}dx
derivative of-(18)/(t^3)+3/(t^2)
derivative\:-\frac{18}{t^{3}}+\frac{3}{t^{2}}
integral of xsqrt(x+2)
\int\:x\sqrt{x+2}dx
integral of (x-1)ln(x)
\int\:(x-1)\ln(x)dx
(\partial)/(\partial x)(-f(r,x)rsin(x)*sin(x))
\frac{\partial\:}{\partial\:x}(-f(r,x)r\sin(x)\cdot\:\sin(x))
derivative of f(x)=(-2x^2-2)^3
derivative\:f(x)=(-2x^{2}-2)^{3}
derivative of-e^{-x}cos(x-e^{-x}sin(x))
\frac{d}{dx}(-e^{-x}\cos(x)-e^{-x}\sin(x))
(\partial)/(\partial x)(xe^{xy}+2y)
\frac{\partial\:}{\partial\:x}(xe^{xy}+2y)
integral of e^{1-2t}
\int\:e^{1-2t}dt
integral of sqrt(2-3x)
\int\:\sqrt{2-3x}dx
(\partial)/(\partial x)(4y^8+3y^2x^2)
\frac{\partial\:}{\partial\:x}(4y^{8}+3y^{2}x^{2})
(x^2+y^2)dx=2xydy
(x^{2}+y^{2})dx=2xydy
maclaurin ln(1+e^{-x})
maclaurin\:\ln(1+e^{-x})
integral of 1/(x^{2/3)(2+x^{1/3})}
\int\:\frac{1}{x^{\frac{2}{3}}(2+x^{\frac{1}{3}})}dx
integral of sin(sqrt(t))
\int\:\sin(\sqrt{t})dt
derivative of a*x^2+b*x+c
\frac{d}{dx}(a\cdot\:x^{2}+b\cdot\:x+c)
integral of (x^3+x+1)/(1+x^2)
\int\:\frac{x^{3}+x+1}{1+x^{2}}dx
laplacetransform (t)e^{4t}
laplacetransform\:(t)e^{4t}
integral of sin^2(2x)
\int\:\sin^{2}(2x)dx
integral of 1/(sqrt(9x^2-49))
\int\:\frac{1}{\sqrt{9x^{2}-49}}dx
derivative of (x^2-1^3)
\frac{d}{dx}((x^{2}-1)^{3})
derivative of 1/(t^2-1)
derivative\:\frac{1}{t^{2}-1}
integral of (7x-1)/(x^2-1)
\int\:\frac{7x-1}{x^{2}-1}dx
derivative of f(x)=sqrt(4x+1)
derivative\:f(x)=\sqrt{4x+1}
integral of ((x^3+16))/(x^2+16)
\int\:\frac{(x^{3}+16)}{x^{2}+16}dx
integral of-tan(x)+C
\int\:-\tan(x)+Cdx
integral of x*cos(8x^2+pi)
\int\:x\cdot\:\cos(8x^{2}+π)dx
taylor 9sqrt(1+x)
taylor\:9\sqrt{1+x}
derivative of sin^3(4x)
derivative\:\sin^{3}(4x)
integral of 3x^2(x^3-4)^4
\int\:3x^{2}(x^{3}-4)^{4}dx
derivative of (2x/(e^{4x)})
\frac{d}{dx}(\frac{2x}{e^{4x}})
y^'=x+y
y^{\prime\:}=x+y
y^{''}+y=sin(6t),y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}+y=\sin(6t),y(0)=0,y^{\prime\:}(0)=0
(\partial)/(\partial x)(1+cos^4(x^4))
\frac{\partial\:}{\partial\:x}(1+\cos^{4}(x^{4}))
derivative of sin(ln(w))
derivative\:\sin(\ln(w))
(4y+2t-5)dt+(6y+4t-1)dy=0
(4y+2t-5)dt+(6y+4t-1)dy=0
sum from n=0 to infinity of e^{-an}
\sum\:_{n=0}^{\infty\:}e^{-an}
(2dy)/(dx)+6y=3
\frac{2dy}{dx}+6y=3
limit as x approaches infinity of-12
\lim\:_{x\to\:\infty\:}(-12)
derivative of-(4x-3/((2x^2-3x+1)^2))
\frac{d}{dx}(-\frac{4x-3}{(2x^{2}-3x+1)^{2}})
integral from-5 to 5 of sqrt(4+|x|)
\int\:_{-5}^{5}\sqrt{4+\left|x\right|}dx
limit as x approaches 3+of x-1
\lim\:_{x\to\:3+}(x-1)
integral of sin(2x)cos^3(2x)
\int\:\sin(2x)\cos^{3}(2x)dx
limit as x approaches 4 of (2x)/(x-4)
\lim\:_{x\to\:4}(\frac{2x}{x-4})
(\partial)/(\partial x)(sin(xye^{x^2}))
\frac{\partial\:}{\partial\:x}(\sin(xye^{x^{2}}))
1
..
1156
1157
1158
1159
1160
..
2459