Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of 3x^2+8
\frac{d}{dx}(3x^{2}+8)
integral from-1 to 2 of (3x^2+2)
\int\:_{-1}^{2}(3x^{2}+2)dx
limit as x approaches 1/3 x of sin(x)
\lim\:_{x\to\:\frac{1}{3}x}(\sin(x))
y^'=e^{2x-y}
y^{\prime\:}=e^{2x-y}
taylor 2x^2+2x
taylor\:2x^{2}+2x
tangent of f(x)= x/(x^2+81),\at x=0
tangent\:f(x)=\frac{x}{x^{2}+81},\at\:x=0
integral from-pi to pi of |x|cos(nx)
\int\:_{-π}^{π}\left|x\right|\cos(nx)dx
integral from 0 to 1 of (x^4+4)/x
\int\:_{0}^{1}\frac{x^{4}+4}{x}dx
limit as x approaches 4 of 1/((4-x)^2)
\lim\:_{x\to\:4}(\frac{1}{(4-x)^{2}})
derivative of a+bxcos(3x+cxsin(3x))
\frac{d}{dx}(a+bx\cos(3x)+cx\sin(3x))
(\partial)/(\partial x)(2xy-2y)
\frac{\partial\:}{\partial\:x}(2xy-2y)
(\partial)/(\partial y)(1/(1+x^2+y^2))
\frac{\partial\:}{\partial\:y}(\frac{1}{1+x^{2}+y^{2}})
derivative of x^2sqrt(x^3+a^3)
\frac{d}{dx}(x^{2}\sqrt{x^{3}+a^{3}})
integral of (3x^3+3x+2)/(x^3+x)
\int\:\frac{3x^{3}+3x+2}{x^{3}+x}dx
tangent of f(x)= 1/(x^4),\at x=3
tangent\:f(x)=\frac{1}{x^{4}},\at\:x=3
(\partial)/(\partial z)(xe^z)
\frac{\partial\:}{\partial\:z}(xe^{z})
integral of x^2+3x-1000000
\int\:x^{2}+3x-1000000dx
derivative of 1/(x+9)
derivative\:\frac{1}{x+9}
integral of (e^{x/2})/x
\int\:\frac{e^{\frac{x}{2}}}{x}dx
integral of 7x^3+4x^2
\int\:7x^{3}+4x^{2}dx
tangent of 3/(2sqrt(x))
tangent\:\frac{3}{2\sqrt{x}}
derivative of ln((x-3^2))
\frac{d}{dx}(\ln((x-3)^{2}))
taylor sqrt(x)
taylor\:\sqrt{x}
derivative of 1/(x^7+1/(x^8))
\frac{d}{dx}(\frac{1}{x^{7}}+\frac{1}{x^{8}})
derivative of (3x-2x^23)
\frac{d}{dx}((3x-2x^{2})3)
sum from n=1 to infinity of ne^{7n}
\sum\:_{n=1}^{\infty\:}ne^{7n}
derivative of x/((1+x^2))
derivative\:\frac{x}{(1+x^{2})}
limit as x approaches-4 of (x^2+2)/(x+5)
\lim\:_{x\to\:-4}(\frac{x^{2}+2}{x+5})
(dy)/(dx)=xy^2
\frac{dy}{dx}=xy^{2}
(\partial)/(\partial y)(x*y+y^2)
\frac{\partial\:}{\partial\:y}(x\cdot\:y+y^{2})
integral of cos(x)-1
\int\:\cos(x)-1dx
tangent of f(x)=2xe^x,\at x=0
tangent\:f(x)=2xe^{x},\at\:x=0
(\partial)/(\partial x)(4ln(xy)+3ln(yz)+ln(xz))
\frac{\partial\:}{\partial\:x}(4\ln(xy)+3\ln(yz)+\ln(xz))
area x=y^2-4y,x=y-y^2
area\:x=y^{2}-4y,x=y-y^{2}
2y^{''}-15y^'-8y=0
2y^{\prime\:\prime\:}-15y^{\prime\:}-8y=0
integral from-1 to 1 of x-sqrt(1-x^2)
\int\:_{-1}^{1}x-\sqrt{1-x^{2}}dx
derivative of y=(x^6-10)sqrt(x)
derivative\:y=(x^{6}-10)\sqrt{x}
integral of sin^5(x)cos^8(x)
\int\:\sin^{5}(x)\cos^{8}(x)dx
sum from n=3 to infinity of 1/(n^2-1)
\sum\:_{n=3}^{\infty\:}\frac{1}{n^{2}-1}
inverse oflaplace s/((s^2+9)^2)
inverselaplace\:\frac{s}{(s^{2}+9)^{2}}
tangent of y= 1/(sqrt(4-x))
tangent\:y=\frac{1}{\sqrt{4-x}}
integral of ((4x-7))/(x^2-6x+13)
\int\:\frac{(4x-7)}{x^{2}-6x+13}dx
derivative of-7/(x^2)
derivative\:-\frac{7}{x^{2}}
area y=8-x^2,y=x^2,x=-3,x=3
area\:y=8-x^{2},y=x^{2},x=-3,x=3
(x^2+4)dy=(2x-8xy)dx
(x^{2}+4)dy=(2x-8xy)dx
integral of-2/(pin)cos((pin)/2 x)
\int\:-\frac{2}{πn}\cos(\frac{πn}{2}x)dx
(dy)/(dx)=(7x^2)/(5y^2)
\frac{dy}{dx}=\frac{7x^{2}}{5y^{2}}
derivative of f(x)=(((x+1))/((x-1)))^2
derivative\:f(x)=(\frac{(x+1)}{(x-1)})^{2}
integral of 7tan^2(x)sec(x)
\int\:7\tan^{2}(x)\sec(x)dx
limit as x approaches 0 of 2/(1+2^{1/x)}
\lim\:_{x\to\:0}(\frac{2}{1+2^{\frac{1}{x}}})
integral of 1/(sqrt(x^2+16x))
\int\:\frac{1}{\sqrt{x^{2}+16x}}dx
derivative of (e^{xx}-e^x/(x^2))
\frac{d}{dx}(\frac{e^{xx}-e^{x}}{x^{2}})
limit as x approaches 5 of 6/x
\lim\:_{x\to\:5}(\frac{6}{x})
integral of 1/(1+tan(x))
\int\:\frac{1}{1+\tan(x)}dx
y^{''}+6y^'=0,y(0)=1,y^'(0)=1
y^{\prime\:\prime\:}+6y^{\prime\:}=0,y(0)=1,y^{\prime\:}(0)=1
integral of x*e^{-3x}
\int\:x\cdot\:e^{-3x}dx
integral of (x^2+6x+5)/(x^2+2x+1)
\int\:\frac{x^{2}+6x+5}{x^{2}+2x+1}dx
derivative of arccos(((x+1)/2))
\frac{d}{dx}(\arccos(\frac{(x+1)}{2}))
integral from-7 to 0 of 1/(sqrt(9-x))
\int\:_{-7}^{0}\frac{1}{\sqrt{9-x}}dx
derivative of (sqrt(x^5)/(x^3))
\frac{d}{dx}(\frac{\sqrt{x^{5}}}{x^{3}})
derivative of 5x^2cos(x+x)
\frac{d}{dx}(5x^{2}\cos(x)+x)
(\partial)/(\partial y)(((y+x))/((y-x)))
\frac{\partial\:}{\partial\:y}(\frac{(y+x)}{(y-x)})
tangent of f(x)=x^2-2
tangent\:f(x)=x^{2}-2
2(dy)/(dx)=xy(x+1)
2\frac{dy}{dx}=xy(x+1)
integral of x(2x+7)^8
\int\:x(2x+7)^{8}dx
integral of 1/(x(2-x))
\int\:\frac{1}{x(2-x)}dx
integral of 1/(6x-1)
\int\:\frac{1}{6x-1}dx
integral of x^2e^{bx}
\int\:x^{2}e^{bx}dx
laplacetransform sin(t+pi)
laplacetransform\:\sin(t+π)
integral of 1/((x-1)^2(x-2))
\int\:\frac{1}{(x-1)^{2}(x-2)}dx
derivative of y=9e^xcos(x)
derivative\:y=9e^{x}\cos(x)
taylor sqrt(1-x)
taylor\:\sqrt{1-x}
integral of 1/(m^3+m)
\int\:\frac{1}{m^{3}+m}dm
derivative of e^{-6x}-6e^{-6x}x
\frac{d}{dx}(e^{-6x}-6e^{-6x}x)
limit as x approaches infinity of 0.53^2
\lim\:_{x\to\:\infty\:}(0.53^{2})
integral from 0 to 1 of sqrt(1-(x-1)^2)
\int\:_{0}^{1}\sqrt{1-(x-1)^{2}}dx
integral of (-7sec^2(x))
\int\:(-7\sec^{2}(x))dx
partialfraction (x^2)/(x^2+3)
partialfraction\:\frac{x^{2}}{x^{2}+3}
derivative of y=(sqrt(x)+x)/(x^2)
derivative\:y=\frac{\sqrt{x}+x}{x^{2}}
integral of (2x-3/x)^2
\int\:(2x-\frac{3}{x})^{2}dx
slope of (-7,-9),(-2,-9)
slope\:(-7,-9),(-2,-9)
integral of (x^{1.4}+7x^{2.5})
\int\:(x^{1.4}+7x^{2.5})dx
derivative of (sqrt(x^2-2x)/(x^2))
\frac{d}{dx}(\frac{\sqrt{x^{2}-2x}}{x^{2}})
f(x)= x/(x^2+4)
f(x)=\frac{x}{x^{2}+4}
t^3y^'+4t^2y=e^{-t},y(-1)=0
t^{3}y^{\prime\:}+4t^{2}y=e^{-t},y(-1)=0
integral of-3sin(x)
\int\:-3\sin(x)dx
expand sqrt(x)(x^2+1)^{10}
expand\:\sqrt{x}(x^{2}+1)^{10}
integral from 1 to 5 of (x-3)
\int\:_{1}^{5}(x-3)dx
derivative of 1/(t^2+6t-2)
derivative\:\frac{1}{t^{2}+6t-2}
derivative of x^4+3x^2-6
\frac{d}{dx}(x^{4}+3x^{2}-6)
limit as x approaches 0 of (5x)/(x^2+5x)
\lim\:_{x\to\:0}(\frac{5x}{x^{2}+5x})
(dy)/(dx)+2y=e^xy^{-6}
\frac{dy}{dx}+2y=e^{x}y^{-6}
integral of ((ln(x))2)/x
\int\:\frac{(\ln(x))2}{x}dx
integral from 0 to pi/2 of e^{sin(5pix)}cos(5pix)
\int\:_{0}^{\frac{π}{2}}e^{\sin(5πx)}\cos(5πx)dx
integral of 2x(x^2+6)^7
\int\:2x(x^{2}+6)^{7}dx
inverse oflaplace {1/(4s+1)}
inverselaplace\:\left\{\frac{1}{4s+1}\right\}
integral of (5sec(x)-cos(x))^2
\int\:(5\sec(x)-\cos(x))^{2}dx
integral of cot^3(4x)sec^2(4x)
\int\:\cot^{3}(4x)\sec^{2}(4x)dx
integral of (sqrt(4-x^2))
\int\:(\sqrt{4-x^{2}})dx
limit as x approaches 0-of (e^x)/(x^3)
\lim\:_{x\to\:0-}(\frac{e^{x}}{x^{3}})
1
..
1181
1182
1183
1184
1185
..
2459