Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(x^3+y^3)
\frac{\partial\:}{\partial\:x}(x^{3}+y^{3})
maclaurin x^2sin(x)
maclaurin\:x^{2}\sin(x)
derivative of (x-cos(x)sin(x))
\frac{d}{dx}((x-\cos(x))\sin(x))
tangent of 4x^3-5x+3
tangent\:4x^{3}-5x+3
limit as x approaches 0 of (1/x)sin(x)
\lim\:_{x\to\:0}((\frac{1}{x})\sin(x))
area y= 25/2-(x^2)/2 ,(-5,5)
area\:y=\frac{25}{2}-\frac{x^{2}}{2},(-5,5)
derivative of 5-3x
\frac{d}{dx}(5-3x)
laplacetransform 20t^3
laplacetransform\:20t^{3}
derivative of y=sin^2(x^2)
derivative\:y=\sin^{2}(x^{2})
(\partial)/(\partial x)(ln(4x^2+y^2+2))
\frac{\partial\:}{\partial\:x}(\ln(4x^{2}+y^{2}+2))
integral of (x^2)/2-2/(x^2)
\int\:\frac{x^{2}}{2}-\frac{2}{x^{2}}dx
(dy)/(dx)=((y-2))/((y-1))
\frac{dy}{dx}=\frac{(y-2)}{(y-1)}
derivative of 4/(sqrt(sec(x)))
\frac{d}{dx}(\frac{4}{\sqrt{\sec(x)}})
integral from-1 to 5 of (1+4x)
\int\:_{-1}^{5}(1+4x)dx
y^{''}-4y^'+9y=xe^x
y^{\prime\:\prime\:}-4y^{\prime\:}+9y=xe^{x}
derivative of (2x^2^2)
\frac{d}{dx}((2x^{2})^{2})
derivative of f(x)=(10x+8x^2)/((5+8x)^2)
derivative\:f(x)=\frac{10x+8x^{2}}{(5+8x)^{2}}
area 4sqrt(x),2x
area\:4\sqrt{x},2x
derivative of f(x)=7e^xsqrt(x)
derivative\:f(x)=7e^{x}\sqrt{x}
integral of sin^2(3x)cos(3x)
\int\:\sin^{2}(3x)\cos(3x)dx
integral of x^2e^{6x}
\int\:x^{2}e^{6x}dx
derivative of 2sin(x/2)
\frac{d}{dx}(2\sin(\frac{x}{2}))
integral of x*cos(4x)
\int\:x\cdot\:\cos(4x)dx
y^'=sqrt(y)
y^{\prime\:}=\sqrt{y}
derivative of (4-x^2)/(x^3)
derivative\:\frac{4-x^{2}}{x^{3}}
derivative of sin(x-xsin(y))
\frac{d}{dx}(\sin(x)-x\sin(y))
limit as x approaches 4 of (2x+1)/(3x+3)
\lim\:_{x\to\:4}(\frac{2x+1}{3x+3})
(dy}{dx}=\frac{e^x)/y
\frac{dy}{dx}=\frac{e^{x}}{y}
integral from-infinity to 18 of xe^{x/9}
\int\:_{-\infty\:}^{18}xe^{\frac{x}{9}}dx
derivative of (x^2-10x+9sqrt(25-x^2))
\frac{d}{dx}((x^{2}-10x+9)\sqrt{25-x^{2}})
integral of (xcos^2(y)-sin(y))
\int\:(x\cos^{2}(y)-\sin(y))dx
integral of [cos(x/2)-sin(3 x/2)]
\int\:[\cos(\frac{x}{2})-\sin(3\frac{x}{2})]dx
derivative of 7/(x^{-2}+5/(x^{-3)})
\frac{d}{dx}(\frac{7}{x^{-2}}+\frac{5}{x^{-3}})
area sqrt(x), 1/3 x,x=25
area\:\sqrt{x},\frac{1}{3}x,x=25
derivative of arccot(x/5)
\frac{d}{dx}(\arccot(\frac{x}{5}))
limit as x approaches 0 of 100/2
\lim\:_{x\to\:0}(\frac{100}{2})
derivative of tan^4(3x^2)
\frac{d}{dx}(\tan^{4}(3)x^{2})
integral of ((x^2+x))/((x-3)(x^2+1))
\int\:\frac{(x^{2}+x)}{(x-3)(x^{2}+1)}dx
integral of-1/((x+3)^2)
\int\:-\frac{1}{(x+3)^{2}}dx
derivative of (x^2/(20))
\frac{d}{dx}(\frac{x^{2}}{20})
derivative of 3sqrt(x)-4x
\frac{d}{dx}(3\sqrt{x}-4x)
integral from 1 to 2 of x/(1+4x^2)
\int\:_{1}^{2}\frac{x}{1+4x^{2}}dx
slope of (-3/7 ,0),(0,6)
slope\:(-\frac{3}{7},0),(0,6)
integral from 0 to 5 of e^x
\int\:_{0}^{5}e^{x}dx
limit as x approaches 4 of 3x^5-4
\lim\:_{x\to\:4}(3x^{5}-4)
area sqrt(x),x-2,0,4
area\:\sqrt{x},x-2,0,4
inverse oflaplace s/((s+3)^2+1)
inverselaplace\:\frac{s}{(s+3)^{2}+1}
integral of (10)/(r^2)
\int\:\frac{10}{r^{2}}dr
6t(dy)/(dt)+y=t^3
6t\frac{dy}{dt}+y=t^{3}
derivative of x^2+4y^2
derivative\:x^{2}+4y^{2}
y^'=((3t^2-e^t))/(2y-5)
y^{\prime\:}=\frac{(3t^{2}-e^{t})}{2y-5}
limit as x approaches 5 of 2e^x-2ln(x)
\lim\:_{x\to\:5}(2e^{x}-2\ln(x))
d/(dt)(-2t)
\frac{d}{dt}(-2t)
integral of tan^2(1)
\int\:\tan^{2}(1)dx
area y=9x^2,x=1,y=0
area\:y=9x^{2},x=1,y=0
integral of \sqrt[3]{x^{10}}
\int\:\sqrt[3]{x^{10}}dx
(\partial)/(\partial y)(ln(x+2y+3z))
\frac{\partial\:}{\partial\:y}(\ln(x+2y+3z))
integral of n/(n^2+6n+10)
\int\:\frac{n}{n^{2}+6n+10}
integral of (4x-3)/(4x^2-6x)
\int\:\frac{4x-3}{4x^{2}-6x}dx
integral of ((x+1))/(x^2+2x)
\int\:\frac{(x+1)}{x^{2}+2x}dx
integral of tanh(x/6)
\int\:\tanh(\frac{x}{6})dx
limit as x approaches 0 of 2cos(1/x)
\lim\:_{x\to\:0}(2\cos(\frac{1}{x}))
derivative of 3cos(2x)
derivative\:3\cos(2x)
tangent of y=x^3,\at x=-3
tangent\:y=x^{3},\at\:x=-3
derivative of y=(x^5)/(4-x^4)
derivative\:y=\frac{x^{5}}{4-x^{4}}
inverse oflaplace 2/(s(5s+1))
inverselaplace\:\frac{2}{s(5s+1)}
derivative of e^{-y^2}
derivative\:e^{-y^{2}}
integral of+3x^3e^{-x^2}
\int\:+3x^{3}e^{-x^{2}}dx
integral of (8)
\int\:(8)dx
integral from 0 to pi of integral of 1
\int\:_{0}^{π}\int\:1dxdy
limit as x approaches infinity of x^{-5}
\lim\:_{x\to\:\infty\:}(x^{-5})
derivative of (768/(sqrt(x))-1)
\frac{d}{dx}(\frac{768}{\sqrt{x}}-1)
integral from-1 to 0 of 6(e^{1/x})/(x^3)
\int\:_{-1}^{0}6\frac{e^{\frac{1}{x}}}{x^{3}}dx
area 12-x-x^2,x+4
area\:12-x-x^{2},x+4
area y1=x^3+4x^2-6x-9,y2=3x^2
area\:y1=x^{3}+4x^{2}-6x-9,y2=3x^{2}
tangent of f(x)=e^{7x^2},\at x=2
tangent\:f(x)=e^{7x^{2}},\at\:x=2
integral of y-ye^z
\int\:y-ye^{z}dx
integral of r/((r^2+x^2)^{3/2)}
\int\:\frac{r}{(r^{2}+x^{2})^{\frac{3}{2}}}dr
limit as x approaches 6-of 5/(x-6)
\lim\:_{x\to\:6-}(\frac{5}{x-6})
(\partial)/(\partial y)(sqrt(1-x^2))
\frac{\partial\:}{\partial\:y}(\sqrt{1-x^{2}})
limit as x approaches 0+of x^{17}ln(x)
\lim\:_{x\to\:0+}(x^{17}\ln(x))
integral from 3 to 12 of ln(x^8)
\int\:_{3}^{12}\ln(x^{8})dx
integral of (sin(nx))/n
\int\:\frac{\sin(nx)}{n}dx
y^'=-1/2 y
y^{\prime\:}=-\frac{1}{2}y
integral of ((12)/x+x/(12))
\int\:(\frac{12}{x}+\frac{x}{12})dx
xy^'+3y=(2e^{4x})/(x^2)
xy^{\prime\:}+3y=\frac{2e^{4x}}{x^{2}}
derivative of ax^2e^{-x}
\frac{d}{dx}(ax^{2}e^{-x})
derivative of ln(3/(x^2+9))
\frac{d}{dx}(\ln(\frac{3}{x^{2}+9}))
tangent of f(x)=x^x,\at x=2
tangent\:f(x)=x^{x},\at\:x=2
(xy^2-x)dx+(x^2y+y)dy=0
(xy^{2}-x)dx+(x^{2}y+y)dy=0
(\partial)/(\partial x)(20-2x+1.5-x+3x)
\frac{\partial\:}{\partial\:x}(20-2x+1.5-x+3x)
(d^2}{dx^2}(-8sin(\frac{3x)/2+1))
\frac{d^{2}}{dx^{2}}(-8\sin(\frac{3x}{2}+1))
(\partial)/(\partial t)(xe^{-t}sin(θ))
\frac{\partial\:}{\partial\:t}(xe^{-t}\sin(θ))
limit as x approaches 0+of 1/(x^2)+ln(x)
\lim\:_{x\to\:0+}(\frac{1}{x^{2}}+\ln(x))
integral of (-10)/(x^2(25-x^2)^{1/2)}
\int\:\frac{-10}{x^{2}(25-x^{2})^{\frac{1}{2}}}dx
tangent of sqrt(x)(x-8)
tangent\:\sqrt{x}(x-8)
integral of x^2e^{18x}
\int\:x^{2}e^{18x}dx
integral of \sqrt[4]{x}
\int\:\sqrt[4]{x}dx
limit as x approaches 4 of (x^4-256)/(x^3-64)
\lim\:_{x\to\:4}(\frac{x^{4}-256}{x^{3}-64})
maclaurin (1+x^2)^{-3/2}
maclaurin\:(1+x^{2})^{-\frac{3}{2}}
1
..
1190
1191
1192
1193
1194
..
2459